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Abstract

We introduce various notions of globular multicategory with homomor-
phism types. We develop a higher dimensional modules construction that
constructs globular multicategories with strict homomorphism types. We
illustrate how this construction is related to iterated enrichment. We
show how various collections of “higher category-like” objects give rise to
globular multicategories with homomorphism types. We show how these
structures suggest a new globular approach to the semantics of (directed)

homotopy type theory.
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Chapter 1

Introduction

There are a great variety of approaches to defining a theory of weak higher categories
(see for instance [32]). A topological approach using tools of abstract homotopy theory
has enjoyed great popularity in recent years, and has led to impressive results in a
plethora of fields, ranging from geometry and topology to algebra, logic and type
theory. Nonetheless, this approach is not without its limitations: low-dimensional
notions of higher category, the formal theory of co-groupoids described by homotopy
type theory, and the intuitive, informal higher category theory used in practice, are
arguably globular as opposed to simplicial, and tend to be based on explicit operations
as opposed to implicit operations, which are merely required to exist because of
filling conditions. The algebraic approach to higher category theory based on globular
operads addresses these issues but there are large gaps in this area, and key notions
which have yet to be defined. Consequently, while one can typically take a result
of 1-category theory, and then adapt it in order to obtain a result about topological
(00, 1)-categories, this is not currently possible for algebraic higher categories. This
thesis aims to build a bridge connecting algebraic and topological models of higher
category, as well as approaches based on type theory. In developing this framework,
we present the beginnings of a semantics for directed homotopy type theory, and we
generalize the Batanin-Leinster definition of algebraic higher categories to a definition
of higher functors, modules, and transformations.

Our central objects of study are a many-objects generalization of globular oper-
ads that we refer to as globular multicategories. A guiding intuition is that a globular
multicategory can be seen as a theory of higher categories. A typical globular multi-
category comes with “higher category-like” objects, together with modules between
these objects, and arrows between modules. Our hope is that globular multicategories
will prove to be a useful tool in model-independent formal higher category theory, and

we believe that all these data are fundamental for this purpose.



1.1 Overview

We are motivated by two related questions:
1. How can we organize the data needed to reason about higher categories?
2. How can we compare different models of higher category theory?

These questions are closely related since any comparison between different models
inevitably organizes the data of these models in some way. Furthermore, we tend
to need more and more data about each model, in order to make more and more
thorough comparisons. This chapter introduces these questions, and covers two im-
portant approaches to higher category theory. We discuss how each of these questions

motivates the study of globular multicategories.

1.2 Background

1.2.1 Formal Higher Category Theory

Category theory provides an abstract framework in which to study much of “set-
based” mathematics. Familiar constructions such as products and quotients can be
characterized via universal properties which determine these notions up to isomor-
phism. Once a definition has been phrased in such a manner, it is then straightforward
to examine models based on categories other than Set. Indeed, topos theory allows
one to study the very notion of “set” category-theoretically. Thus, category theory
provides a language to describe constructions in “set-based” mathematics.

However, category theory itself exhibits structure which cannot be described well
using just this language. For example, the notions of equivalence, adjunction and
monad all involve natural transformations, the 2-cells of the 2-category of categories.
Formal category theory aims to describe an abstract language for doing category
theory. This language should be abstract enough to reason about “category-like”
structures beyond just ordinary categories. For example, many key theorems about
categories have analogues about enriched categories and internal categories. We would
like all the different versions of each theorem to be instances of a single more general
theorem when stated in the right way.

At first, it might seem that these goals can be achieved by reasoning inside a 2-
category. Much can be done in this setting. See for example the description of monads

and their algebras in [50]. However, some problems, such as describing pointwise Kan



extensions, depend on a notion of representability which cannot be described using
just the data of a 2-category. In order to talk about representability a notion of
profunctor is needed. (In the case of standard categories, profunctors are functors of

the form A°® x B — Set.) Frameworks for formal category theory include:

e Yoneda Structures (see [52]) : These equip a 2-category with internal Yoneda
embeddings.
e Proarrow Equipments (see [58,59]) : These describe the key properties of the

canonical 2-functor Cat — Prof sending f — Hom(id, f). These can also be
viewed as double categories with extra structure relating vertical cells (“func-

tors”) to horizontal cells (“profunctors”) (see [18]).

e Virtual Equipments (see [17]): These generalize proarrow equipments by drop-
ping the requirement that profunctors be composable. Typically, the composite

of two profunctors F' and G will be a coend in the following sort of form.

/xF(—,x) % Gz, —)

Virtual equipments can be used to reason about situations where these colimits
need not exist or behave well. For example, enrichment in (not necessarily co-
complete) monoidal categories works perfectly well in this setting. Furthermore,
virtual equipments allow a number of results to be stated without technical con-

ditions (see [17]).

Finally, if we start with a 2-category with sufficient structure, then we should be
able to construct one of these settings for formal category theory. For example, it is
shown in [57] that given a 2-topos (a 2-category which behaves like the 2-category of
categories), there is an associated Yoneda structure.

Of course, 3-categories such as the 3-category of 2-categories contain extra struc-
ture that necessitates an even more expressive language. Hence, we expect the search
for a good language for higher categorical mathematics to continue into higher di-
mensions. Ultimately, we would like to have a language for n-categories for all n < w.
However, as n increases, the amount of data involved in definitions tends to increase
rapidly.

We will see in this thesis that various collections of “higher category-like” objects
can be organized into globular multicategories. Moreover, these globular multicat-
egories frequently come with the extra structure of homomorphism types. Since

globular multicategories are a categorification of virtual double categories, it seems



reasonable to think that they will provide a natural environment in which to study

formal higher category theory.

1.2.2 Topological Higher Categories

Recently a family of models of higher categories which we will refer to as topological
higher categories has become popular. Given a topological space, we would like there
to be an associated fundamental oo-groupoid of points, paths, homotopies, homo-
topies between homotopies, etc. In fact, it is considered desirable that this fundamen-
tal oo-groupoid functor be an equivalence of (oo, 1)-categories between topological
spaces (up to weak homotopy equivalence) and oco-groupoids. This is the homo-
topy hypothesis. This correspondence suggests that we could define co-groupoids to
be topological spaces and study them in an equivalence-invariant way using tools
from homotopy theory. Simplicial sets provide a well-known combinatorial model of
topological spaces. Hence, we identify oo-groupoids with simplicial sets (up to weak
homotopy equivalence), or more specifically with Kan complexes, the fibrant objects

in the standard Kan-Quillen model structure on simplicial sets.

Definition 1.2.2.1. Given an n-simplex A, a horn A is a simplicial set obtained by
discarding an (n-1) cell from the boundary dA. A Kan complez is a simplicial set

such that for each horn inclusion A — A, every commutative diagram

A—X

A—1
has a filler.

The filling conditions can be thought of as describing both the composition and
the inverses of simplicial cells. For example, a composite of two 1-cells f and g

corresponds to a filler of the following form:

Building on these observations we are led to a number of (equivalent) models of

(00,1)-category including:



e Categories enriched in simplicial sets (see for instance [11])

e Quasicategories (see for instance [35]): these are just simplicial sets with slightly
fewer filling conditions than Kan complexes so that we can have non-invertible

1-cells.

e Complete Segal Spaces (see for instance [38]): these are intuitively categories
internal to simplicial sets whose two notions of equivalence (coming from the

category structure and the simplicial set of 0-cells) agree.

There are a number of ways of building on these topological models to obtain
categories of (0o, n)-categories for n > 1. The resulting quasicategories of (0o, n)-
categories are all equivalent and are characterized by a few simple axioms in [5].

Importantly, key notions in 1-category theory have been transported to study
topological (00, 1)-categories (see [35]). As aresult, a useful theory of (0o, 1)-categories
has been developed. Riehl and Verity have developed category theory in a model-
independent manner using certain structured simplicially-enriched categories known
as oo-cosmoi (see [11-16]). Their approach allows results such as the Yoneda Lemma
to be proved for a large class of models, including topological (0o, n)-categories. Fur-
thermore, they show that much can be done by studying an associated virtual equip-
ments of modules.

Another particularly simple model in this family is given by relative categories.

Definition 1.2.2.2 ( [1]). A relative category is a category C together with a sub-
category W of weak equivalences such that VW contains all the objects of C.

Given a relative category (C, W), there exists a localization C[WW™!]. This is the
(00, 1)-category obtained from C by inverting (in a weak sense) the morphisms of
W. In fact, (0o, 1)-categories can be identified with relative categories in this way
(see [1]). Notably, many important categories in algebraic topology and homological

algebra come equipped with natural notions of weak equivalences. Examples include:
e weak homotopy equivalences between topological spaces,
e (uasi-isomorphisms between chain complexes.

Frequently, relative categories underlie more structured categories such as model
categories. These come with notions of fibration and/or cofibration that can be

thought of as inclusions and projections which interact well with weak equivalences.



Whilst in some sense the weak equivalences are all that is needed in order to deter-
mine the relevant higher category, this extra structure is often useful for equivalence-
invariant computation. Homotopical models of intentional type theory can be seen as
an embodiment of this idea. (See for example [19].) From this perspective, fibrations
can be seen as display maps which tell us how to model dependent types. A key

feature of such models is that diagonal maps have factorizations
A—as Al — 5 Ax A

where the right-hand arrow is a fibration. If the object A is seen as a type in a type
theory, then the path space object A’ models the identity type of A. In this way, we
can obtain a model of dependent type theory with intensional identity types from any
“sufficiently nice” (o0, 1)-category. Awodey and Warren first made this connection
in [3]. Thus, homotopy type theory provides a synthetic language for reasoning in
an equivalence-invariant fashion about oo-groupoid-like objects (see [53]). Moreover,
a guiding intuition is that there should be a higher adjunction between a suitable
category of homotopy type theories and a category of nice (0o, 1)-categories. Much
work has been done in this direction, although some work still remains. (See for
example [27] and [28].) A recent approach to extending homotopy type theory for
reasoning about more general (0o, n)-categories is [10].

Conceptually, the co-groupoids described by homotopy type theory are quite dif-
ferent from the topological models of higher categories. The tower of identity types
gives types a globular structure. However, topological models tend to be simplicial.
For example, a common way to describe the Hom object of a quasi-category is to
change model, view it as a simplicially-enriched category, and then look at the cor-
responding simplicial set of 1-cells. Thus, fundamental operations of homotopy type
theory and of the informal reasoning that people use in practice to reason about
higher categories are arguably not captured very well by topological models.

In this thesis, we will show that models of dependent type theory with identity
types induce globular multicategories with homomorphism types. Thus, our results
can be seen as a first step towards a globular semantics for homotopy type theory. We
show how this framework suggests directed generalizations of more familiar models

of dependent type theory.

1.2.3 Algebraic Higher Categories

A different class of models of higher category, the globular models of higher category in

the style of Batanin, can be constructed quite directly from intensional type theories.



(See [6] for Batanin’s original definition of higher categories using globular operads,
and see [30] for a popular variation due to Leinster. For constructions of these globular
models starting from an intensional type theory, see [34,54].) We build on these
results by describing methods to construct algebraic higher categories given a globular
multicategory with homomorphism types.

Algebraic models consist of operations sending pasting diagrams to cells. Since
these operations are specified explicitly, we call these models algebraic. This seems
to be a good match for the constructive style of type theory, which asks for proof
witnesses. Indeed, Finster and Mimram [21] have shown how an algebraic notion
of weak w-category in this family of models can be described using a type-theoretic
calculus. Another key feature of these models is that they are inherently directed:
an w-groupoid is just a w-category whose n-cells are equivalences for n > 1. Thus,
algebraic higher categories seem much closer in spirit to the usual low-dimensional
notions of higher category, as well as informal notions of higher category.

However, the usefulness of these models is severely limited by the lack of def-
initions of key notions. For example, it remains an open problem to describe the
weak w-category of weak w-categories in this setting, or even to describe a notion of
composition along k-cells for k& > 0. (See [23] for one proposed definition of k-cells
(higher transformations) and composition along 0-cells.) We discuss how the theory
of globular multicategories suggests another possible family of definitions for these

objects.

1.3 Summary of this Thesis

Chapter 2 provides a detailed introduction to globular multicategories, and introduces
the fundamental notions and notations that permeate this thesis. We provide an
introduction to the basic structures on which the notion of globular multicategory
depends: pasting diagrams, and the free strict w-category monad. We then define
globular multicategories themselves. The presented definition is not new but our
choice of notation is novel. We adopt type-theoretic terminology for the data in each
globular multicategory; we believe that this approach greatly facilitates reasoning
about these data. We then assemble a collection of examples and constructions, both
novel and previously known, that undergirds and illustrates the remaining chapters.

The Hom-profunctor plays a fundamental role in category theory, and higher di-
mensional generalizations are needed to reason about higher categories. Chapter 3

describes how a globular multicategory can be equipped with strict homomorphism



types that play this role. We show how various sorts of strict n-categories can be
organized into globular multicategories with strict homomorphism types. Finally, we
introduce a higher dimensional modules construction that constructs globular mul-
ticategories with strict homomorphism types, and we show how this construction is
intimately linked to iterated strict enrichment.

Many interesting higher dimensional examples do not satisfy the identities re-
quired for the construction of strict homomorphism types, although they do satisfy
these identities up to a suitable notion of equivalence. In order to solve this problem,
Chapter 4 introduces two weak variants of homomorphism types in a globular mul-
ticategory; fibrational homomorphism types behave like a directed version of identity
types in a type theory, while weak homomorphism types behave like directed path
types (propositional identity types) in a type theory. We show how type theories
with identity types (or path types) induce corresponding globular multicategories
with fibrational (or weak) homomorphism types. In fact, our results rely on two-
sided notions of factorization, generalizing the familiar one-dimensional factorization
systems that provide semantics of undirected homotopy type theories. In this way,
we believe that globular multicategories with fibrational (or weak) homomorphism
types provide a natural environment for the study of the semantics of future directed
homotopy type theories.

The previous chapters show how various higher categorical structures induce glob-
ular multicategories with homomorphism types. Chapter 5 contains results in the
other direction: given a globular multicategory with homomorphism types, we con-

struct higher categorical objects.

1.4 Summary of Contributions

Here we highlight the contributions of this thesis.

Chapter 2 introduces the vertical construction, and the families construction for
globular multicategories. It describes a universal property for families constructions.
We also introduce a novel type-theoretic notation here, which simplifies previously
known notions. For example, using this notation, the defining property of the 2-cells
of GlobMult closely resembles the usual notion of natural transformation.

Chapter 3 is almost entirely novel. We introduce strict homomorphism types,
and construct a number of examples. We construct level-wise strict higher modules

functors and prove their universal properties. We then use these level-wise functors



to construct more complicated higher modules functors. We show how iterated en-
richment can be understood as the result of applying a families construction and
then a modules construction. In particular, this implies that the globular multicate-
gory of modules in SpanSet can be seen as the collection of strict w-categories, strict
profunctors between them, and strict transformations between these objects.

Chapter 4 is also almost entirely novel. We introduce globular multicategories
with pre-homomorphism types, fibrational homomorphism types, and weak homo-
morphism types. We show how these definitions are all characterized by certain
representing properties of reflexivity substitutions. We give new notions of category
with pre-homomorphism types, fibrational homomorphism types, and weak homomor-
phism types. We show how these notions generalize categories with identity types
and path types.

Chapter 5 is a straightforward application of the new tools developed in the pre-
vious chapters. We discuss how the data of categories with strict and fibrational
homomorphism types can be equipped with higher categorical structure.

Combining these results, we significantly develop the theory of globular multi-
categories. We obtain new constructions of algebraic higher categorical structures
from topological higher categories, and we do this in a manner that suggests a new

approach to the semantics of dependent type theory with (directed) identity types.

1.5 Related Work

Here we highlight the most significant influences of this work, as well as some closely
related ideas in the literature.

One-dimensional globular multicategories are virtual double categories. This case
is by far the best understood case in the literature and is thoroughly developed
in [17]. This case, while far simpler and more familiar than the general case, is
already sufficiently rich to illuminate many of the key constructions and definitions
of this thesis. In fact, many of our new results can be viewed as higher dimensional
generalizations of results about virtual double categories. In particular, the monoids
and modules construction on virtual double categories is the one-dimensional version
of the higher modules construction introduced in this thesis. This construction was
first introduced by Leinster [31], and a universal property is described in [17].

The idea of equipping globular multicategories with homomorphism types is al-
most present in [51]. Here, monoidal globular categories play an intermediate step

in the construction of w-groupoids from dependent type theories with identity types.



This approach to the semantics of type theory greatly influenced Chapter 4. Many
of our results on type theories are also closely related to results of Lumsdaine [31],
although our focus is more on the algebraic structures giving type theories semantics,
than on syntactic constructions.

Our approach to algebraic higher categorical structures builds on Batanin and
Leinster’s approach to higher categories [0, 30] as well as Garner’s homotopical in-
terpretation of Leinster’s approach [22]. The weak notions of higher functor that we
propose are closely related to the coherence results for functors between 2-categories
and 3-categories described by Gurski [24].

The idea of weakening higher transformations using generalized operads and al-
gebraic contractions has been studied independently by Kachour [25,26]. Kachour’s
work on this topic has gone through numerous revisions, and various similar ap-
proaches are described.

Notably absent in this thesis is a comparison with the oco-cosmoi of Riehl and
Verity (see [11-10]). Given that they construct virtual equipments of modules, this

seems like a promising future direction.

1.6 Future Work

Another goal for future work is to clarify the type-theoretic nature of globular mul-
ticategories. Each globular multicategory should induce a model of dependent type
theory in the form of a category with families (see [19]), or equivalently a natural
model of type theory (see [2]). There should be a close correspondence between
the types, terms, contexts, etc. of a globular multicategory and the synonymous ob-
jects in the associated category with families. Hence, this approach could give a
precise justification for the type-theoretic terminology used throughout this thesis.
Moreover, results about globular multicategories could be effectively translated into
results about dependent type theories and vice versa. For example, when a globular
multicategory is representable, the corresponding type theory should support certain
Y-types; when a globular multicategory has homomorphism types, the correspond-
ing type theory should support identity types. It would be very interesting to study
the analogue of type-theoretic universes in the setting of globular multicategories.
Since the objects of globular multicategories with homomorphism types behave like
collections of higher categories, homomorphism types of the universe could provide a
great deal of information about the globular multicategory of all categories and the

globular multicategory of all globular multicategories.
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Chapter 2

Globular Multicategories

In this chapter, we introduce our central objects of study: globular multicategories. A
globular multicategory amounts to a globular set of types, together with composable
collections of terms; terms are arrows sending pasting diagrams of types to other
types. Our first goal is to make this definition precise. We then introduce a variety of
examples and constructions that we will use in later chapters. Much of this material
can already be found throughout the literature. Here we organise this material, and

supplement it with a handful of new results.

2.1 Preliminary Notions

In this section, we lay the groundwork for the definition of globular multicategories.
We provide a self-contained introduction to the categories of globes, globular sets,
and pasting diagrams. Finally, we examine how the free strict w-category monad T

can be succinctly described using pasting diagrams.

2.1.1 Globes

We first examine what is meant by the term globular. In general, a globular object
is parametrised by the category of globes, whose objects are points, arrows, arrows

between arrows, etc.

Definition 2.1.1.1. The category of globes, G = G, is freely generated by the

morphisms
90,1 o1,2 Th—1,k Tk k+1
70,1 71,2 Tk—1,k Tk, k+1

subject to the globularity conditions:
Ok4+1,k4+2 © Ok k+1 = Tk4+1,k+2 © Ok k+1,

Ok+1,k+2 © Tk k+1 = Tk4+1,k+2 © Tk k+1-

11



For each n, we refer to the object n as the n-globe. We depict the 0-globe by a point,
and for n > 0, we depict the n-globe as an arrow between (n — 1)-globes. Thus, the

0-globe, 1-globe, 2-globe and 3-globe are depicted as follows:

The morphisms of the globe category can be seen picking out the sources and targets
of these arrows. The globularity condition then says that “the source of the source
is the source of the target” and “the target of the source is the target of the target”.
It follows that for each k < n, there are exactly two arrows £ — n in G. We denote

these arrows, which factor through oy, 41 and 74 41 respectively, by
Ok b —>n, Tk o K —> 1.

Note that n is typically clear from the context, and so we also write oy, 7% : K — n. We
define G,, to be the full subcategory of G on the objects 0,...,n. Foreach 0 < n < w,
an n-globular object in a category C is a functor A : G — C. We denote the image

of oy, 7 : kK — n under such a functor by
Sk
Aln) == A(k),

and refer to these morphisms as the k-source and k-target morphisms. We will also
write s,t for the arrows s;_1,¢_1 : A(l) — A(l — 1) respectively, and refer to these

maps as the source and target morphisms respectively.

Definition 2.1.1.2. An n-globular object in Set is called an n-globular set, while an
n-globular object in Cat is called an n-globular category. In these cases, we refer to
the elements of A(k) as k-cells. We depict k-cells by labelled k-globes. Thus, the
representable globular sets corresponding to the 0, 1 and 2-globe could be depicted

as follows:
f f
A A-1, B A" s 7B A ¢§$)w B
\g/r \g/r

A ﬁ—>B L k
¥ f h
A é B—— C
~_ Vo~ o
g i



The source and target maps pick out the sources and targets of the depicted arrows.
For example, in the last two diagrams above, we have that s¢ = f and tq¢ = B.
We say that two n-cells a,b are parallel when sa = sb and ta = tb. For example,
in the above right diagram the 1-cells ¢ and j are parallel, while ¢ and h are not
parallel. The globularity condition for globular sets amounts to the requirement that

the source and target of any n-cell be parallel.

Remark 2.1.1.3. There are obvious fully faithful inclusions,

Go‘ y G < > © )Gw.

Let C be any category. Then composition with these inclusions induces truncation

functors
[GP, €]+ [GP,C] = - ¢ [GP,(]

When C = Set, the truncation functor tr; forgets all n-cells for n > k. When C has
an initial object, each of these functors has a left adjoint Ly,,. Suppose that & < n,
and that A is a k-globular object in C. Then, we have that

A@) ifi<k

This left adjoint is fully faithful, and we frequently identify a k-globular set, A, with
the n-globular set Ly, (A). Indeed, we will particularly focus on w-globular sets
since results about w-globular sets can typically be transformed into results about
n-globular sets for all n by taking truncations. We refer to w-globular sets simply as

globular sets. We define the dimension of an globular set A by
dim A = max{n | A(n) # 0}.

For example, each of the examples of globular sets depicted by a diagram above has
dimension at most 3. It follows that a globular set A is in the image of Ly, (A’) for

some n-globular set A" if and only if dim A = n.

2.1.2 Globular Pasting Diagrams

The globular pasting diagrams are an important class of globular sets. Each globular
pasting diagram describes a notion of composition in a higher category. For example,

there is a globular pasting diagram consisting of a pair of composable 1-cells:

A-Lsp-92,¢C (2.1.2.a)
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This diagram describes the usual notion of composition in a category: whenever we
have arrows f and g as above, there is a canonical composite g o f. On the other
hand, the globular set

A-Llspet ¢

is not a globular pasting diagram, since we do not in general expect such diagrams to
induce any sort of composition in a category. There are a number of equivalent ways
of describing globular pasting diagrams in the literature. See for example [0, 30, 51]
where these objects are called n-stage trees, globular cardinals, and pasting diagrams.
We present two different descriptions here.

On the one hand, the collection of pasting diagrams can be inductively defined,
starting with the globes, and then defining new pasting diagrams by “gluing the target

of one diagram to the source of another”.

Definition 2.1.2.1. For each n > 0, we define the following data:
o A set pdbr(n) whose elements we refer to as bracketed n-pasting diagrams,
e For each 7 € pd™(n), a globular set T,

e For each k < n, and each bracketed n-pasting diagram 7, a bracketed k-pasting

diagram 7y, together with source and target maps
Onk Ly, — I, Trk LTy, — L

satisfying globularity conditions:

Or,j© 0-773], k= Onk = Trj 0 O-Tl'aj ko

O-ﬂ-?j ° 7_7r8j 7k = Tﬂ'vk = 7—7r7j o 7_7r8j 7k'

Firstly, when n = 0, there is a unique bracketed 0-pasting diagram D° such that
ZD" is the representable 0-globe. Now suppose that n > 0. Then we define the data

simultaneously by induction:

e There is a bracketed n-pasting diagram D™ such that ZD" is the representable
n-globe. Whenever k < n, we define (D"),, = DF, and we define o}, and 73 to

be the arrows induced by the corresponding arrows in G.

14



e Each bracketed (n—1)-pasting diagram 7 induces a bracketed n-pasting diagram
7t such that Zr = Zr. In this case, we set 7 = m; we define the boundary

inclusions by

idI7r ifk=n idI7r ifk=n
Ort k= . Trt k = .
’ oxk Hk<n ’ e fk<n

When there is no danger of ambiguity, we will elide this notation and simply

+

refer to 71 as .

e Given bracketed n-pasting diagrams m, mo such that (m)s, = (m2)s, = p, there
is a bracketed n-pasting diagram denoted m; ®y my. We define Z(m; ©f m2) to
be the following pushout:

T7r1,k

Ip —2 5 Ty

S

I7T2 E— I(’T(’l Ok 7T2)

When j < k we define (m ©f m2)s; = p;, and we define o, ;, 7r; to be the

composites
Tpo, 200y T — T(my O ), Tpo, 20 Tp — T(my Op m)-

When j = k, we define (m O m2)s; = (m1)a; = (72)s; = p, and we define o}, 7;

to be the composites

I(?Tl)aj ﬁl—’j—>I7r1 —)I(T[’l Ok 7T2), I(?TQ)@]. M)Iﬂ'g —)I(ﬂ'l Ok 7T2)

When j > k, we define (71 O m2)a;, = (1), Ok (72)a;. The source and target
maps are induced by the universal properties of these pushouts. For example,
by the globularity conditions, we have that o, ; © O(ry)s;k = Omyk and oq, ;0
T(m)ojk = Try k- Hence, we define ox o, m ; to be the canonical arrow making

the following diagram commute:

T(Tr ) - e .
Tp — 00 () T Im
U(m)aj,kl l
I(m2)a; — L(m1)a; Or I(72)a;
0'7r2«jl ...0—7"1®k7"2vj
s
I7r2 > [7'('1 Ok Z7T2

These definitions are easily seen to satisfy the globularity conditions.
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We view pd™(n) as a category by defining an arrow m — p in pd™(n) to be a map
of globular sets Zr — Zp. We define pd™ to be the globular set whose n-cells are

bracketed n-pasting diagrams; source and targets are defined so that, for all k,
SET =t = T,
Given a globular set X, the category of elements el(X) is defined so that:
e An object in el(X) is a pair (n,x), where n € G and z € X (n).

e Suppose that f:m — n is an arrow in G, and suppose that we have an object
(n,z) € el(X). Let y = X(f)(x). Then, there is an arrow (f,z) : (m,y) —
(n,x) in el(X).

e Composition of arrows in el(X) comes from G.
It follows that there is a functor Z" : el(pd™) — G-Set defined by
Ibr(n,ﬂ) =TZ(m), Ibr(ak,ﬂ) = O ks Ibr(Tk, T) = Tr k-

Example 2.1.2.2. The diagram (2.1.2.a) is the result of pasting two 1-cells along a

shared 0-cell; we have the following pushout diagram:

A—— B

- —
A

~ —

B2 C
This exhibits diagram (2.1.2.a) as Z(D' ®y D).

Example 2.1.2.3. A 2-cell and a 1-cell can be pasted along a shared 0-cell in two

ways:
AL, p

B ALsB v C

~_

\ , / ;

5
B v C
~_
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and

g
P \)A g
A |¢ B—=C
~— 7
\ / g
B> C
The resulting pushouts, denoted Z(D!'®(D?) and Z(D?®D!), correspond to whisker-

ing operations in a 2-category.

B

Example 2.1.2.4. Combining the previous two examples, we obtain the following
diagram:
/L,(
A |» B0
~— 7
h
A s B v C

g
Ay B C
S~

The right-hand side is clearly Z(D? ®y D?). Hence, this pushout diagram tells us
that (D? ®y D') ©p: (D! ©g D?) = (D? &y D?); this corresponds to the well known

fact that in a 2-category horizontal composition can be defined using a combination

of left-whiskering, right-whiskering and vertical composition.

Example 2.1.2.5. The following diagram depicts the globular set associated to the
3-pasting diagram (D? ®; (D® ®; D?)) ®g (D' ®¢ D?) with labels omitted:

Example 2.1.2.6. Familiar laws of composition in higher categories follow from
the commutativity of colimits. For example, for each k& < n, we have the following

associativity and unit laws:
W@kagﬂ'ng@kﬂ', (OQkﬂ)Qkng@k(ﬂ'@kp),

We will henceforth denote the composite m O (T2 O « -+ O m) - -+ ) by T Of T2 Ok
-+« O m. Commutativity of colimits also implies that, for each 7,7 < n, we have the

following interchange law:
(m@; ) @i (p©; p) = (7 @i p) @ (7' & p).
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These examples serve to illustrate that bracketed pasting diagrams have an intu-
itive graphical flavour. However, Example 2.1.2.4 exhibits one shortcoming of this
approach: there are non-trivial relations between the operations ®g, ®1, ..., and this
makes constructions using this definition more involved. For example, it not a priori
clear that the operations ®g, ®1, ... respect isomorphisms in pdbr(n). Another way
to understand this difficulty is to note that the pushouts involved in the definition
of pd™(n) implicitly involve computing certain quotients. In contrast, the follow-
ing construction avoids this issue by defining globular pasting diagrams to be simple

inductively defined objects without using any quotients.

Definition 2.1.2.7. Let x = () be the empty list. For each n > 0, we define the set

pd(n) of n-pasting diagrams by induction on n:
e When n = 0, we define pd(0) = {x},

e When n > 0, we define pd(n) to be the set of lists (my,7s,...,m) such that
[ >0andm € pd(n—1).

We view pd as a globular set by defining, for each = € pd(n),
ST = *, tm = %,
when n =1, and
s(my, ... m) = (smy,. .., 8m), t(my, ... m) = (tmy, ..., tm),
when n > 1.

Remark 2.1.2.8. These lists are often viewed as trees. Given an element 7 in pd(n),

we define a finite tree Tr 7 of depth at most n, by induction on n as follows:
e When n = 0, we define Trx to be the tree with a unique vertex.

e When n > 0, and 7 = (my,m9,...,m) € pd(n), we define Tr7 to be the tree
whose root has a child m; for each 1 < i <[, such that the subtree whose root

is m; 18 Trm;.
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For example, the 3-pasting diagram ((*, (x),*),*, (x)) corresponds to the following

tree:

Example 2.1.2.9. Each n-pasting diagram 7 can be seen as an (n + 1)-pasting
diagram 7. This amounts to the fact that every tree of depth at most n has depth
at most (n + 1).

Definition 2.1.2.10. The arrows of pd(n) are defined inductively. When n = 0,

there is a unique arrow id, : x — . Suppose that n > 0, and that 7 = (m,...,m)
and p = (p1,...,pm) are elements of pd(m). Then to give an arrow f : 7 — p is to
choose

e A natural number j; > 0 such that j; + 1 < m. We view this as an embedding
of lists of length [ into lists of length m.

e For each 1 <4 <, an arrow f; : m — pj,4; in pd(n — 1).

Composition is defined by
jgof :jg +jf7 f(gof)i :gjf-l—iofi~
The identity arrows are defined by
Jia, =0, (idy); = id,, .

These data suffice to make pd(n) a category. Suppose that n > 0, and that f : 7 — p
is an arrow of pd(n). We define sf : st — sp and tf : tw — tp by induction on n.
When n = 1, we define

sf=tf =id,.

When n > 1, we define
Jsp =55 (sf)i = s(fi),
jtf :jf7 (tf)z :t(fi)-
It is easily seen that taking sources and targets is functorial and satisfies the globular-

ity condition. Hence, we have equipped pd with the structure of a globular category.
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Example 2.1.2.11. The assignment —* : pd(n) — pd(n + 1) is the objects part of
g

a functor. Given f : 71 — p, we set

irr =0, (f)i= 1

Example 2.1.2.12. Suppose that n > 0, and that 7 = (7,...,m) is an n-pasting

diagram. Then, we define source and target inclusions
R s
OW'W(‘?HW’ 7_71—71-8—)71-
by induction on n. When n = 1, we define

j0'7r = 07 jTTr = l

This completes the definition in this case, since x™ has length 0. When n > 1, we

define
j0'7r = 07 jTTr = 07

(Uﬂ)i = Ony, (Tﬂ')i = Tr;-

It is easily verified that the source and target inclusions satisfy globularity conditions.

Definition 2.1.2.13. We define the suspension functor 3 : pd(n) — pd(n + 1) on

objects by
Ym = (m),

and on arrows by

jsr=1, Efh=r

Thus, ¥ grows a tree m by adding a new root vertex whose only child is the root of .
For example, when 7 is the tree in Remark 2.1.2.8, we have that ¥ is the following

tree:
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Example 2.1.2.14. Suppose that n > 0, and suppose that m,m € pd(n) where
m = (m1,...,my) and m = (721, ...,T2,m). Then we define the n-pasting diagram

m O o by list concatenation:

T @0 T = (7T171, sy T, T2, e - 77"2,m>-

Suppose that f : 7 — p; and g : T — py are arrows in pd’'(n). Then we define
f ®og:m ©gma — p1 O p2 by
. . fi f1<i<jy;
Jroog =Jr g (f @0 9) {gz- i, <1<,

These assignments underlie a functor — ©¢ — : pd(n) x pd(n) — pd(n).

In order to justify calling the elements of pd(n) pasting diagrams, we will construct
an equivalence between pd(n) and pd™(n). First, we note that, each of the preceding
two examples corresponds to a natural operation on pd™(n) in a manner which we
will shortly make precise (see Example 2.1.2.18). The concatenation operator ®y on
pd(n) corresponds to the operation ®q on pd" which pastes along 0-boundaries. The

functor ¥ corresponds to the following suspension construction:

Definition 2.1.2.15 (See [30, §9.3]). For each bracketed n-pasting diagram m €
pd™ (n), we define a bracketed (n + 1)-pasting diagram Yr € pd™(n 4+ 1) inductively

as follows:
e We set XD" = D"
e We set X(nT) = (Zm)*.
e We set (7 O ') = (27) Oy (X7).

For each 7, the pasting diagram X7 has two distinct O-cells xg and x;. For each n > 0,
an element x of Y (n) corresponds exactly to an element z of w(n — 1). Thus, we

define ¥ on arrows by

(Ef)(x) = f(2), (2f) (ki) = *i.
These assignments underlie a fully faithful functor ¥ : pd™(n) — pd™(n + 1).

Example 2.1.2.16. Suppose that 7 is the following pasting diagram:

g
A%BWC
~__

h
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Then ¥ is the following pasting diagram:

>m

*0

> k1

ENey]

&)

We now define a comparison functor ®,, : pd(n) — pd™(n) by induction on n.
When n = 0, we define

QQ

®,(x) = D", P, (id,) = idpo .
Suppose that n > 0. Then we define ®,, on objects so that
(I)n(ﬂ-ly . ,7Tl) = Z(q)n—lﬂ-l) @0 cee @0 E(q)n_lﬂ'l). (212b)

Suppose that f: 7 — p is an arrow in pd’(n). For each i, let ¢; : (P, _17m;) < O, 7
and r; 1 2(Pp_1p5 fﬂ-) — &, p be the canonical inclusions into the colimits defining
&, and P, p respectively. We define ®,,f : &, 7 — ®,,p to be the canonical map such
that

(q)nf) Ol = K; 0O E(q)nflfz)

Example 2.1.2.17. Suppose that 7 is the pasting diagram of Remark 2.1.2.8. Then
®,, () is the bracketed pasting diagram of Example 2.1.2.5.

Example 2.1.2.18. It follows immediately from this definition that

D, (m @9 p) = Pp(m) @0 Pr(p),

and

o, (X7) = XD, (7).

The map ®,, is easily seen to respect sources and targets. We define ® : pd — pd’
to be the morphism of globular sets such that ®(n) = ®,,.
In order to prove that &, is an equivalence, we will show that every pasting

diagram in pd(n) can be written in a form similar to the right-hand side of (2.1.2.h).

Definition 2.1.2.19. Suppose that 7 is a (bracketed) n-pasting diagram. For each
—1 <k < n, we say that 7 is k-trivial when there exists a (bracketed) (n — k — 1)-
pasting diagram 7 € pd(n — k — 1) such that

T =Sktlg
Note that 7 is necessarily unique.
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It follows that a bracketed n-pasting diagram is k-trivial when it can built out of

globes of dimension greater than k without pasting along i-boundaries for i < k.

Proposition 2.1.2.20. Let 7 be a bracketed n-pasting diagram. Then there exists a

unique n-pasting diagram U, () such that
T2, (U, (r)).

Proof. We proceed by induction on n. The claim is clear when n = 0 since there
is a unique O-pasting diagram, namely x, and there is a unique bracketed 0-pasting

diagram, namely D°, and we have that
®y(x) = DO,

Hence, suppose that n > 0. Then repeatedly applying associativity, unit and inter-

change laws, we have that
mE (T O (Mo + - Oom) )

where each m; = Xm; is O-trivial. Since each m; is O-trivial, there exists a unique
(n—1)-pasting diagram W, 7; such that ®,,_1(V,,_1(7;)) = 7;. Thus, ©,,(XV,,_1(7;)) =
P, 1V, 1(7;) = m. Hence, setting

we have that ®,(U, (7)) = 7.

It remains to prove uniqueness. Hence, suppose that 7 = ®,(p) for some n-
pasting diagram p = (p1,. .., pm). We will show that [ = m, and p; = ¥,,_1(7;). Each
bracketed pasting diagram o induces a poset Ordy o whose objects are k-cells of o for

all £ > 0, and whose partial order is generated by the relations
soa < a < tya,

for each k£ > 0 and each k-cell a € o(k). This assignment defines the objects part of
a functor
Ordy : pd™(n) — Poset .

Given o € pd™(n), let hto be the height of the poset Ordgo; that is, hto is the
maximum length of a chain in Ordg(o). It is easily seen that ht @, (¥, (7)) =20 + 1
and ht &, (p) = 2k + 1. Since ¢, (¥, (7)) =2 © = &,(p) and the height of a poset
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is invariant under isomorphisms, we must have that [ = m. For each bracketed n-
pasting diagram o, and each cell a € o(k), let ht a be the height of a as an element
of Ordyo; that is, ht a is one less than the maximum length of a chain in Ordy(o)
ending in a. Let 1 <1 <. Let o; be the subobject of o such that for each k > 0, we
have that

a € o0i)(k) <= hta=2i—1.

A 0-cell in o; is the 0-source or O-targets of one of these k-cells. Then, it follows that
O, (V,(m)); = m and ®,(p); = XP,,_1(p;). However, since the heights of elements in
a poset are invariant under isomorphism, we must have ®,(p); = &, (¥, (7));. We
now have that

X0, 1(pi) 2 Du(p) E2m Z XD, 1V, (7).

Hence, since ¥ is fully faithful, the uniqueness part of the inductive hypothesis implies

that p; = U,,_17;. Consequently, we have that p = ¥, (7). O

Theorem 2.1.2.21. The functor ®,, : pd — pd™(n) of (2.1.2.b) is an equivalence

of categories.

Proof. Proposition 2.1.2.20 implies that ®,, is essentially surjective. Since, ®,, is easily
seen to be faithful, it remains to show that ®,, is full. We will construct an arrow
U,.(f): ™ — psuch that ®,(¥,(f)) = f by induction on n.

First, suppose that n = 0. Then, the only arrow in pdbr(O) is idpo and we have
that ®,(ids) = idpo. Now suppose that n > 0. Suppose that f : ®,(7) — @, (p) is
a morphism in pd™(n) where 7 = (7y,...,m) and p = (py, ..., pm). By definition of
®,,, we have that

D, (m) = Xm O -+ - O Ly, D, (p) =Xp1 ©o -+ Og Lpm.- (1)

For each 0 < i < [, let x; be the unique O-cell of ®,(m) such that ht xo = 2i. We
define jy; to be the unique integer such that

ht(f*o) = 2J\1;f

Suppose that 1 < ¢ <. Then, there must exist a cell a in ®,, 7 such that sga = *;_1
and tpa = *;. Hence, fa is a cell in ®,p such that sofa = fx,_1 and tofa = fx;.
Inspecting the O-cells in (1), it follows that fx; = f x;_1 +2. Hence, we have that
f*i = f*0+2i =2(jus + 7). Now, for any cell @ in Xm;, we have that

2% —2=ht+_; < hta < htx; = 2i.

24



Consequently, since Ordy f is order preserving, we have that
2(Jus +14) — 2 ="ht(fx-1) < ht(fa) <ht(fx) =2(us +1).

This implies that fa € Xpj, ;. This allows us to define (¥ f); by restricting and
co-restricting f. If ¢; : ¥m; < 7 and K; : Xpj, . +i < p are the canonical inclusions,

then we define f; : &, 1w — ®,_1Pjy;+i to be the unique map such that
Jou=rioXf;

Weset (V,,f); = ¥, f;. Putting this together, we have that ¥, f = (V,,_1 f1,..., V1 f1).
By construction, we have that &, ¥, (f) = f. O

Corollary 2.1.2.22. For each k > 0, every (k — 1)-trivial n-pasting diagram 7 €
pd(n) is of the form

T =11 O T2 + - O 7,
for some unique | > 0, and uniquely determined k-trivial m; € pd(n). Here, we use

the convention that the 0-ary sum is the representable DF.

Proof. Suppose that 7 is k-trivial. When k£ = —1, this is Proposition 2.1.2.20. Oth-
erwise, we have that m = Xn’ for some (k — 1)-trivial /. The result now follows by

induction. O

These results allow us to give a simple inductive description of the cells of each
pasting diagram. First, note that since the unique 0-pasting diagram has a unique
0-cell, every pasting diagram 7 has a unique 0-cell in its O-source pasting diagram
som. By abuse of notation, we refer to this 0O-cell as somw. Similarly, every pasting
diagram 7 has a unique target O-cell, which we denote by tym. Now suppose that

7w = (m,...,m) is any n-pasting diagram. Thus,
7'(':277'1@0"'@0277'1.

Suppose that = is a O-cell of 7. If x = som, then we write z = (0). Note that
som = soxm; whenever [ > 0. On the other hand, if  # sgm, we must have that
x = toxm; for some unique m;. This follows from the fact that each m; has exactly
2 different 0-cells, namely sqm; and tom;, and that for each 1 < ¢ < [, we have that
tom; = Somi+1. In this case, we write x = (7). Thus, there are exactly [ distinct 0-cells
in 7, which we denote by (0), (1),...,(1).

Now suppose that x is a k-cell of 7 for some £ > 0. Then, we must have that
[ > 0 and, furthermore, = € m;(k) for some unique i. Let 7, be the unique pasting
diagram such that m; = 7. Then x corresponds to some unique (k —1)-cell 2’ in 7.

In this case, we write x = (7, 2/).
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Remark 2.1.2.23. From now on, we will not distinguish between pd and pd™. We

will identify each pasting diagram in pd with its corresponding globular set.

2.1.3 The free strict w-category monad

Since pasting diagrams parameterise composition in higher categories, they allow us
to give a simple description of the free strict w-category monad T : G-Set — G-Set.
For any globular set X, an n-cell f of TX consists of an n-pasting diagram 7 € pd(n),
called the shape of f, together with a map

fim— X.

We refer to these maps as pasting diagrams in X. For each cell i : D! — 7 of 7, we

denote by f; the composite

We will also write f = (fi)ier in order to emphasise that f amounts to a collection of
cells of X indexed by the cells of 7. When n > 0, the source and target of f in TX

are the following 75 _,-shaped (n — 1)-cells:

Sf = .foo—w,n—b tf = foTTr,n—l'

In summary, each level of the functor T is a coproduct of representables:

T(-)(n)= ][] G-Set(r,—)

wepd(n)

Thus, T is familially representable in the sense of [12,30]. In particular, when T is
the terminal globular set, we have that TT = pd.
Suppose that f,g € TX(n) are n-pasting diagrams in X such that t,f = sig.

Then we have corresponding pasting diagrams
f:mm— X, g:m — X,
such that f o7 = goon, i We define f © g to be the induced map
T O Ty — X.

Then, f®g defines another element of TX (n). More generally, suppose that we have
a pasting diagram I' : p — TX sending each i € p to a m;-shaped diagram I'; in X.
(When p = D" ®; D", and I" sends the n-cell of the first component to m; and sends
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the n-cell of the second component to 7, we recover the preceding example.) Then we
have a corresponding pasting diagram of pasting diagrams, T!op: p — TT = pd,
sending each i € p to the pasting diagram m;. Hence, taking the colimit of the
composite

O e (Tx) 2T e (T L G-Set,

el(p)

we obtain a globular set 7. Since this colimit can be decomposed into pushouts of the
appropriate form (see Definition 2.1.2.1 above and [50]), we have that 7 is a pasting
diagram. Let ¢; : m; — 7 be the canonical coprojection from 7; into the colimit 7.
Suppose that j is a cell in 7. Then, there exist cells 7 in p and h in m; such that
t;(h) = j. Hence, we have a cell I';(h) in TX. The conditions on the colimit 7 ensure
that this cell of TX does not depend on the choice of i. These assignments can be

assembled into a diagram m — X, which we denote by:
or.
1€Ep

The multiplication of the monad T sends T' to (-),. T';. Thus, we think of the mul-

tiplication of T as a globular sum. In fact, these colimits are precisely the globular

1€p

sums used in the various definitions of co-category based on Grothendieck’s work and
developed by Maltsiniotis and Ara, amongst others. (See [1,30].)

Suppose that n < m. Then, for each n-cell M in X, there is a canonical D™-shaped
m-pasting diagram in X which maps the unique n-cell of D" to M. We denote this
m-pasting diagram by

[M] € T(X)(m).

We will often denote this pasting diagram simply by M when there is no ambiguity.
The unit of the monad T is the assignment X — TX which sends each n-cell M
to the n-pasting diagram [M]. The unit laws say that, for each m-shaped pasting
diagram I' : 7 — X, we have that

Ol =T =)

€T jeDbn
For a more detailed description of the free strict w-category monad, see [50].

Remark 2.1.3.1. We can give a similar description of the free strict n-category
monad T,, on n-globular sets, by considering pd,, instead of pd. For any k£ < n, the

truncation functor try : G,- Set — G- Set induces a morphism of monads T,, — T.
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2.2 Definition

A crucial property of the free strict w-category monad, T, is that it is cartesian; i.e.,
its underlying functor preserves pullbacks and the naturality squares of its unit and
multiplication are pullback squares (see [30]). This allows us to define a notion of

generalised multicategory using Leinster’s theory of T-multicategories (see [30]).

Definition 2.2.0.1. A T-span is a span of n-globular sets of the following form:

X
TA B
We can compose T-spans,

7N RN

TA B TB C

by computing a pullback as in the following diagram

TX Xt Y
TX Y
T?A TB C
l
TA

and then composing the left leg with the multiplication p of T. Let ny be the unit
of T at X. Then the identity T-span at X is the following diagram:

X
WV YX
TX X
Putting all these data together, we obtain a bicategory T- Span.

We can use this bicategory to give our main definition succinctly.
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Definition 2.2.0.2. An globular multicategory is a monad in the bicategory T- Span.

Let us now unpack this definition. Each globular multicategory X has an underlying

T-span
Xy
%7/‘\3
T X, Xo

for some pair of globular sets Xy, X;. We refer to T-spans of this form as globular
multigraphs. We will use type-theoretic terminology to refer to the data contained in

globular multigraphs.

2.2.1 Types

We define Type X = Xj. A k-type is an element of Xy(k). When M is a k-type such
that sM = A and tM = B, we denote M by a stroked arrow:

M:A—+— B.

In low dimensions, we also depict k-types using the notation for globes described in
Section 2.1, except that we use stroked arrows. Hence, going from left to right, the
figure below depicts an unlabelled 0-type, a 1-type M : A — B, a 2-type O : M — N

where M, N : A + B are l-types, and a 3-type ) : O - P where O, P : M -» N
are 2-types:

M AL /—A{\x
. A—>B A Jo B Ao(%)r B

— ~—

A m-shaped k-context T' = (I';);er is a m-shaped element of T X((k). That is a map
of the form
I': =~ — X,.

We depict contexts as pasting diagrams of types.

Example 2.2.1.1. When 7 = D! ©¢ D?, and I' : 7 — X is the m-shaped 2-context
defined by

T(0) = A, (1) = B, r'(2)=C,
I'(1,0) = M, I'(2,0) = N, I'(2,1)= N,
I'(2,1,0) = O,
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we depict I' as follows:
N

M —
A—— B {o C. (2.2.1.a)

i

When an n-context I' contains a k-type D such that & < n and there does not exist
a type E such that sE = D or te = D, we sometimes depict [' with two copies of the
type D joined by an = sign. Thus, the context Eq. (2.2.1.a) could also be depicted
as:
M N
/‘f\( — 1
A || B {ocC (2.2.1.b)
By /2

A k-variable in a m-shaped context I' is a k-cell in 7. When z a k-variable and A =T,

we say that A is the type of x, and write
x: A

For example, in Eq. (2.2.1.a), we have that (0) : A and (2,1,0) : O. We can use
variables to distinguish between different copies of the same type in a context. For

example, in Eq. (2.2.1.a), there are two variables with type N, namely (2,0) and
(2,1).

2.2.2 Terms

We define Term X = X;. A k-term f is an element of X (k). Each term has a context
Ctx f and an output type Ty f. We say that f is w-shaped when Ctx f is m-shaped.
When Ctx f =T and Ty f = A, we write

f:I— A

Thus, we think of f as a generalised arrow sending a m-shaped k-context I' (a pasting
diagrams of typed input variables) to an output k-type A. Since Term X is a globular
set, terms also have source and target terms: for each k > 0 and each k-term f : ' —
A, we have (k — 1)-terms sf : sI' = sA and tf : tI' — tA. In this case we write

Fosf o tf.

Source and target terms satisfy globularity conditions. We depict terms as vertical

arrows between contexts.
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Example 2.2.2.1. The following diagram depicts a (D! ®y D')-shaped 1-term f :
M®yN —O,g + hwhereg: A— D and h: C — E:

o

E

M N
— B —

I
i >
P

Example 2.2.2.2. The following diagram depicts a (D! ®y D?)-shaped 2-term f :
M ©yO = R, sf - tf where sf : M ©g N — Q, s*>f «w t’f and tf : M ©g N —
P, s%f w2 f:

i

Whenever, g : sI' — sA and h : tI' — tA are terms satisfying sg = sh and tg = th,
we say that g and h are term-wise parallel. In particular, source and target terms
are term-wise parallel: when k > 1, we have that s®f = stf and t*f = tsf. For

any term-wise parallel g, h, we denote the set of terms f such that f : ' — A and
f:g - hby
'— A, g-—h]

For any pasting diagram 7 € pd(k), a w-shaped substitution is a m-shaped element
[ = (fi)iexr = Oye, fi of TXi(n). For each i € el(m), we have that

By pasting together the domain contexts of these terms, we obtain a context

r:@ri.

1ET

By pasting together the codomain types, we obtain a mw-shaped context

A=A

sy

Whenever I' and A are defined in this way, we write

f: T — A
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Since variables in a w-shaped context are elements of 7, we will frequently index by

contexts rather than pasting diagrams. For example, in this case, we have that
r=Qr. a=0Qa, =0+
ieA ieA ieA
For all n > 0, each n-substitution f : I' — A has source and target (n — 1)-
substitutions sf : sI' — sA and tf : tI' — tA. As with terms, we write

fosf——tf.
Source and target substitutions satisfy globularity conditions.

Example 2.2.2.3. Suppose that we have 1-terms ¢ : M &g N — P, f -+ ¢ and
YO — Q,g9 - h. Then there is a (D! ©g D')-shaped 1-substitution ¢ &g ¥ :
Mg N ©gO — P oy Q, f + h; we depict this substitution as follows:

AN B0 -—%5D
fl ﬂ¢ g ﬂw lh
E 5 > F & G
2.2.3 Composition of terms

So far we have described the data contained in globular multigraphs, but we now
consider the distinctive feature of globular multicategories: they admit a notion of
composition of terms. Suppose that we have a substitution f : I' — A and a term
g : A — A in a globular multicategory X. The multiplication of X, qua monad in

T- Span, allows us to define a composite term
fig: T — A sfi;sqg =+ tf;tg

We think of f;g as the result of substituting the term f; for the variable i in (the

domain context of) g. We depict composite terms by vertical concatenation.

Example 2.2.3.1. Suppose that f : A — B is a 0-substitution; that is a O-term.
Suppose that g : B — C'is a O-term. Then we depict the composite f;g by

A
I
B

l#

C
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Example 2.2.3.2. Suppose that ¢ ©g ¢ : M ©g N ©g O — P ©q Q, [ -+ g is
the 1-substitution depicted in Example 2.2.2.3. Suppose that we have a 1-term ¢ :
P®yQ — R, d -+ e. Then we depict the composite (¢ ©g ¥); ¢ as follows:

A-M s AYs0-—-%5D
N
> F

E : — G
J ﬂg it
H | > 1

R

We can also compose pairs of substitutions. Suppose that f: ' - Aand g: A - F

are n-substitutions. Then, we define
fig: T — FE
by
fr9=C)9)

D)

where, for each variable ¢ € E, we have that

(f19)i = (fi)jieas; gi-

Example 2.2.3.3. Consider the following diagram:

N
T
4

&

Lo=

The shape of the 1-term d is D'. The shape of the 2-term e is D? ®; D?. The top row
of the picture denotes the (D! ®y D?)-shaped substitution d ®y e. The shape of the
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2-term f is D'. The shape of the 2-term ¢ is D?. The shape of the 1-term h is D°.
The bottom row of the picture denotes the (D? ®y D? ®y D')-shaped 2-substitution
f ©®o g ®o h. The whole picture denotes the composite (d ®q €); (f ©g g ©®o h). By

definition, we have that
(d®oe); (f @0 g @oh)=(d; ) @0 (e;9) @0 (toe; ).

Remark 2.2.3.4. As this last example illustrates, it follows from the definition of

—; — that there is an interchange law between —; — and (). Suppose that f: ' — F
and g : E — A are composable n-substitutions. For each z € A, let f, = de g fy-
Then
F=OL=00H =
yeE 2EA yeE, zEA
Hence,

O faige=C) (@(ﬁh) ! G

TEA z€A \y€E,

=fig

-(0r):(@n)

The associativity law of globular multicategories says that forall f: T' - A, g: A —
E and h: E — A, we have that

(f;9);h = f:(g;h).

This identity holds both when A is a term and when A is a substitution. We will tend

to omit these brackets when working with —; —.

Example 2.2.3.5. Consider the following diagram:

® — ® — @ —> ® —> ® —> @ — @
oLl L
® f > ® f > ® — ® — ®
® f > ® f > ® — ® > ®
2 ﬂ’b 2 ﬂj 2
([ ] } > @ } > @

The whole diagram depicts a composite (D! ® D')-shaped 1-substitution. Associa-
tivity implies that any two ways of building up this composite from its parts are the

samme.
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For each n-type A, the unit of the globular multicategory X, qua monad, induces us
an identity n-term
ida : [4] — A, idgq — idy4.

For each n-context I', we define the identity n-substitution
idr I — F, idsp —+> idt[‘

by setting (idr); = idr,, for each ¢ € I'. The unit laws of X says that for any n-term
f:I'—= A
fiida = f =idr; [.

Similar equations also hold when f is a substitution.

Example 2.2.3.6. Suppose that ¢ is the following 1-term:

A, p A0
fl & lg
D 5 > F
Then the unit laws say that
A A0 g By > NG,
fl ¢ﬂ lg A-M,.p_N.,(¢ ml idMﬂ i(iB ﬂidN lidc
D B =4 ¢ﬂ o= a,p A0
ile idoﬂ lidE D 3 s F fl ¢ﬂ lg
D i > K D 35 y K

Remark 2.2.3.7. We sometimes depict the arrows of identity terms using vertical =
signs. For example, when M : A — B is a 1-type, the following diagram represents

ldM

As another example, given M : A — B as above, a I-term f : A — M,idy + ¢
could be depicted as follows:

A——A
| o) L
A—Aa4—>B



Remark 2.2.3.8. Given a globular multicategory, X, the globular set Type X can be
made into a globular category by defining an arrow A — B in TypeX(n) to be an
n-term [A] — B in X.

Remark 2.2.3.9. For consistency of notation, we say that a globular multicategory
X has a unique (—1)-type (or context, term, or substitution) which we denote by *.

Every O-type (or context, term, or substitution) A satisfies A : x — *.

Definition 2.2.3.10. Given globular multigraphs X,Y, a map of globular multi-

graphs, F : X — Y, is a pair of arrows, Fy, F}, making the following diagram com-

RN

TX, Xo

mute:

TFO v FO

~+ A %v

TY, Yo

A homomorphism of globular multicategories is a map of globular multigraphs pre-
serving composition and identities of terms in X; equivalently, homomorphisms pre-

serve the multiplication and unit of X, qua monad.

We denote the category of globular multicategories and homomorphisms by GlobMult.
Most constructions of this thesis can be understood using ordinary 1-category theory.
However, certain constructions are better understood by considering GlobMult to be

a strict 2-category. The following definition describes the 2-cells of this 2-category:

Definition 2.2.3.11. Let F,G : X — Y be homomorphisms of n-globular multicat-

egories. Then, a transformation ¢ : F = G consists of the following data:

e For each k-type A in X, we require a k-term
oa: FA— GA, Dsa —+ Dra.
It follows that, for each context I in X, there is an induced substitution
¢r: FI' — GT, Gsr —> Oir

defined by (¢r), = ¢r,.
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e We require the following naturality condition: whenever f : ' — A is a term in
X, we have that

Ffios=o¢r;Gf.

Remark 2.2.3.12. We can recover the whole 2-category GlobMult using the theory

of generalised multicategories developed in [17].

Remark 2.2.3.13. Replacing the free strict w-category monad T in these definitions
with the free strict n-category monad T,,, we obtain notions of n-globular multigraph
and n-globular multicategory, for each finite n. For consistency, we will sometimes
refer to plain globular multicategories as w-globular multicategories. We denote the
(2-)category of n-globular multicategories by n - GlobMult. The truncation functors

of Remark 2.1.1.3 and Remark 2.1.3.1 induce truncation functors

0- GlobMult 2 1-GlobMult «+%* w - GlobMult .

AN

These functors have fully faithful left adjoints Ly,, such that

(TypeX)(i) ifi<k
0 ifi>k
(TermX) (i) ifi <k
0 ifi>k

Type(Ly, X) (i) = {

Term (L, X)(i) = {
We define the dimension of a globular multicategory by
dim X = dim Type X.

It follows that dim X = n if and only if there is an n-globular multicategory X’ such
that L, X' = X. We can typically use this observation to obtain results about n-
globular multicategories from results about w-globular multicategories. Hence, as

with globular sets, we focus on the infinite-dimensional case.

2.3 First Examples

Example 2.3.0.1. A 0-globular multicategory is just a category.

Example 2.3.0.2. A 1-globular multicategory is a virtual double category. A virtual

double category consists of the following data:
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e A category whose objects we call 0-types, and whose arrows we call 0-terms.

We depict O-terms as vertical arrows:

A

|

B

e A collection of arrows whose sources and targets are O-types, which we will refer

to as 1-types. We depict 1-types as barred horizontal arrows such as

M
A —+— B

e A collection of arrows, called 1-terms, sending composable lists of 1-types to
a 1-type. Each 1-term also has a source and target O-term. A typical 1-term

could be depicted as follows:

A—+— B —+— C

R

D | s B
0

A 1-term whose source list has length 0 could be depicted as follows:

A——B

A

C —— D
M

e The 1-terms can be composed vertically; A typical composite could be depicted

as follows:

O<—— @0<— @

\
7

This composition is associative, and there are identity 1-terms of the following

form:
A —]\|4—> B
| vidu]
A —+— B
M
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This one-dimensional case is thoroughly studied in [17].

Example 2.3.0.3. Every pseudo-double category (with strict vertical composition

and weak horizontal composition) can be viewed as a virtual double category.

Example 2.3.0.4. Suppose that X and Y are virtual double categories underlying
pseudo-double categories. Then a homomorphism X — Y is a lax functor between

the corresponding double categories.

Example 2.3.0.5. Let A and B be parallel n-types in X, for some n < dim X. Then
there is a canonical (dim X — n)-globular multicategory X (A, B) such that:

e A O-type in X(A4, B) is an (n+ 1)-type M : A - B in X.
e A O-term in X(A, B) is an (n + 1)-term f : [M] — [N], ids —+ idp in X.

e When 0 < k < dimX — n, a k-type M of X(A, B) is an (n + k + 1)-type of X
such that s,M = A and ¢t,M = B.

e When 0 < k < dimX — n, a m-shaped k-term f is a X" !r-shaped (n + k + 1)-
term in X such that s, f =id4 and ¢, f = idp.

The following example, which is essentially contained in [51], motivates our use of

type-theoretic terminology:

Example 2.3.0.6. Every dependent type theory 7T induces a globular multicategory
Gur(T). We have that:

e A O-type A in Gy, (7T) is a type

F A°: Type
in 7.
e Forn > 0, an (n+ 1)-type M : A - B in Gur(7T) is a dependent type
judgement
x: A% y: B°F M°(x,y) : Type
in 7.

e Each globular context I' : sI" - ¢I" in Gyp,(T") corresponds to a list of dependent

types in 7 and thus induces a dependent context
Ty s % tT° B T°(Z, 7y)
in T.
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e AOtermin f:I" = Ain Gur(7) is a term
r:I°F for': A°
in 7.

e Suppose that I is the (n+1)-context in Gy, (7) corresponding to the dependent
context @ : sI'°,z; : tI° b T'(Z,Z,)° in 7. Then an (n + 1)-term in f : I’ —
A, sf +wtfin Gun(T) is a term

T DT, @) fo0 A((sf)° (%), ()" (7))
inT.

e It follows that each substitution I' — A in Gyr(7) corresponds to a context
morphism I'> — A° in 7. Hence, composition of terms in Gy, (7)) is defined
by substitution in 7. The unitality and associativity of this composition follow

from the unitality and associativity of the composition of context morphisms in

T.

2.4 The Span Construction

Batanin [6] describes the following class of examples:

Definition 2.4.0.1. Let C be a category with pullbacks. There is a globular multi-
category Span C such that:

e An n-type in SpanC is a functor A : el(n)°® — C from the category of elements

of the representable globular set n.

e It follows that, given a pasting diagram = € pd(n), a context with shape 7 in

Span C amounts to a functor
I':el(m)® — C.

Associated to such a context there is a canonical functor I'' : el(n)°® — A, which
sends an object of el(n), that is an arrow s : k — n € G, to the limit of the
following diagram:

el(m.)°P r
g L el(m)er L ¢,

and sends arrows in el(n) to the canonical morphisms induced between these

limits.
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e Aterm f:I"— Ain Span,(C) is a natural transformation I" — A.

Remark 2.4.0.2. We refer to functors el(n)®® — C as n-spans in C (see [6]). The
globular multicategory Span(C) underlies the monoidal globular category Span(C)
described ibid. A 1-span is a span in the usual sense. More generally, an (n+ 1)-span
is a “span between n-spans”. For example, a 3-span is a diagram of the following

form:

o<—o<—o/

Example 2.4.0.3. Suppose that C has finite limits. For any objects A, B € C, we
have that Span(C)(A, B) = Span(C/.A x B). Now suppose that n > 0, and that M :
A + Band N : B -» C are parallel n-types in SpanC. Then by repeatedly taking
pullbacks, we obtain an n-span M ®,, 1 N : A - C. We have that Span(C)(M, N) =
Span(C/A ®,-1 B).

Remark 2.4.0.4. A particularly important case to consider is the globular multi-
category Span(Set). This object plays the role of the “internal category of sets” in
GlobMult. (See [51] and Example 2.9.3.8 below). We write

SpanSet = Span(Set).

Example 2.4.0.5. In Chapter 4 we will frequently consider subobjects of globular
multicategories of spans, whose n-types are spans which are fibrations in one sense

or another.

Definition 2.4.0.6. For finite n, we define Span, C = tr,, SpanC.

2.5 Globular Operads

Batanin’s [0] globular operads are another important class of globular multicategories.

Definition 2.5.0.1. A globular operad is a globular multicategory X such that
TypeX = T, the terminal globular set. In other words, a globular operad has a
unique n-type for each n € G. When X is a globular operad, we denote the canonical

n-type in X by n, and the canonical w-shaped n-context in X by 7.
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Example 2.5.0.2. Let G be the globular operad whose only terms are identity terms.
We think of G as the theory of globular sets. See Example 2.6.0.3.

Example 2.5.0.3. When that n = 1, globular operads are the same as non-symmetric

operads in the usual sense.

Example 2.5.0.4. The terminal globular multicategory, 1, is a globular operad and
has a unique 7-shaped n-term for each 7 € pd(n). We think of 1 as the theory of

strict w-categories.

2.5.1 Contractible Operads

Definition 2.5.1.1. A contraction on a globular operad P consists of, for each n-
pasting diagram 7, and each pair of term-wise parallel mg-shaped n-terms g, h : 79 —
n —1in P, a choice of n-term 19" : 7 — n in P such that 19" : g -+ h. We say that

P is contractible when there exists a contraction on P.

Remark 2.5.1.2. We adopt a slight variation of Leinster’s notion of contraction
(see [30], which includes a lifting condition for O-terms. This notion can naturally
be understood homotopically (see [22] and Section 5.3 of this thesis). A comparison

between Leinster’s notion, and Batanin’s original notion [6] can be found in [10]

Definition 2.5.1.3. We say that a globular operad P is normalised when it has a
unique 0-term, idy : 0 — 0.

Example 2.5.1.4. Various notions of weak higher category are parametrised by a
normalised contractible globular operad. See for instance [6—=5, 14, 16,30)].
2.5.2 Endomorphism Operads

Definition 2.5.2.1. A globular object, A, in a globular multicategory X consists of
a 0-type Ap in X, together with, for each 1 < k, a k-type Ag : A1 - Ap_1.

Example 2.5.2.2. Suppose that C is a category with pullbacks. Then a globular
object A in SpanC is precisely a globular object A : G°® — C in C.

Let A be a globular object in a globular multicategory X. Then for each pasting
diagram 7, there is a canonical context 74 such that for each k-cell x € 7(k), we have
that ma(z) = Ag.
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Remark 2.5.2.3 (see ( [0])). Let A and X be as above. Then the endomorphism
operad End A is the subobject of X such that a term f : 7 — n in End A is a w-shaped
term

7TA—>An

in X. The assignment A — End A extends to arrows in an obvious way. In particular,

whenever X = Span C, this assignment defines the objects-part of a functor

End : C®" — GlobMult

2.6 Algebras

Following a general trend in categorical semantics, we can view a globular multicat-

egory as an algebraic theory. Under this lens, we make the following definition:

Definition 2.6.0.1. An algebra of a globular multicategory X is a homomorphism
X — SpanSet. A homomorphism between algebras is a transformation between these

homomorphisms of globular multicategories.

Example 2.6.0.2. Algebras of the terminal globular operad, 1, are strict n-categories.
When P is a normalised contractible operad, algebras of P are some sort of weak higher

category.
Example 2.6.0.3. Algebras of the operad, G, are globular sets.

Example 2.6.0.4. When n = 1, and X is an operad, we recover the usual notion of

algebra of a non-symmetric operad.

Definition 2.6.0.5. Issues of size will not play a large rule in this thesis, but we will
very occasionally need a good notion of small set. For concreteness, we define a small
set to be a set within a particular Grothendieck universe. We say that a globular
multicategory X is small, when TypeX(n) and Term X(n) are small sets, for all n.
We say that a homomorphism of globular categories is small when its type-wise and

term-wise fibers are small sets.

Definition 2.6.0.6. Suppose that Xy and X are small globular multicategories, and
that T : Xy — X is a homomorphism of globular multicategories. Then we have an
adjunction of the following form:

L ang

/_\

GlobMult(Xg, SpanSet) 1 GlobMult(X, SpanSet)

\_/

To—
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Proof. By construction, every n-context I' in SpanSet can be viewed as an n-type I
taking pullbacks. Suppose that we have an algebra Fy : Xy — SpanSet. Then we
define the data of the homomorphism F = Lanj(F,) inductively so that:

e For each k-type Ay € Xo, and each element ag € Fo(Ay), there is an element
t(ag) € F(I(Ap)).

We require that t(ag) : t(sag) - t(tag). It follows that for each k-context I,
and each @y € I, we have an element «(dy) € F(I(T"))".

e For each k-term f: ' — B in X, and each @ € F(I(I"))’, there is an element
F(f)(a) € F(I(B)).
We require that F(f)(a) : F(sf)(sa) - F(tf)(ta).

e For each term fy : I'y — By in X;, and each element ag € Fo(I")', we require
that:

F(I(f0))(e(do)) = e(Fo(fo)(do))

e For each type A € X and each element a € F(A), we require that:
F(ida)(a) = a.

e Suppose that we have f: ' - A and g : A — B in X. Then for each @ € F(I')’,

we require that:

F(f;9)(@) = F(g)(F(f)(a@))-

The size requirements placed on X ensure that this definition makes sense. The

required universal property is easily verified. O

Remark 2.6.0.7. We can also see this result by noting that I : Xy — X corresponds
to a map between essentially algebraic theories, and that algebras of Xy and X are

models of these essentially algebraic theories.

Remark 2.6.0.8. In many cases, the adjunction defined by this left Kan extension is
monadic. In particular, let X be any small globular multicategory, and let Xy be the
globular multicategory with the same types as X but whose only terms are identity

terms, and let I : X — X be the obvious inclusion. Then we have that
GlobMult(Xy, SpanSet) = G-Set/ Type(Xy)
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Furthermore, algebras of X are the same as the algebras of the monad associated to X
that is described by Leinster [30, §4.3], and the functor Io— : GlobMult(X, SpanSet) —
GlobMult(Xy, SpanSet) is the monadic forgetful functor defined ibid.

Example 2.6.0.9. Let X be the globular multicategory inductively defined such that:

e There are two O-types A = HA, and B = H°B in X. A 0O-term is either an

identity term or a canonical term f,: A — B.

e For each k£ > 0, there are exactly two (k + 1)-types. These types are of the
form:

HAHFA » HFA HB:HEB «» H'B

It follows that a m-shaped context I' in X is completely determined by its source

(or target) O-type.

e Suppose that n > 0. Let I" be an (n + 1)-context in X and let M be a (n + 1)-
type in X. We must have that sI' = tI" and sM = tM. Suppose that we have

an n-term fip s 0 SI' — sM. Then there is a unique (n + 1)-term
frow : T — M, fsr.sm = fsrsm-

Thus, types and terms in X are completely determined by their 0-dimensional sources
and terms are effectively “directed” from A to B. We say that a term f : ' — M
such that soI" = soM = A is in the A-component of X. Similarly, we say that f is in
the B-component of X when soI' = soM = B. These components correspond to two

canonical homomorphisms

from the terminal globular operad. Furthermore, to give an algebra F': X — SpanSet
is to give a pair of strict w-categories F'A, F'B together with a strict w-functor FA —
F B between them.
Let Xg be the subcategory of X whose O-terms f : I' — M either satisfy soI' = soM
or have the form
Frrarrn: HFA — HFB

Then an algebra Fy : X, — SpanSet amounts to a choice of strict w-categories
FoA, FoB together with a map between their underlying globular sets. Let I : X, — X

be the obvious inclusion. Both left Kan extension and composition with I respect the
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source and target w-categories, FA and FB. Fixing FA and FB , we obtain the

adjunction
Lang

/_\

Strw-Catpmap(FA,FB) 1 Strw-Cat(FA,FB)

\_/

To—
defining the free strict w-functor monad on maps between the underlying globular
sets of FA and FB.

2.6.1 Discrete Opfibrations

Leinster [30] defines a multicategory of elements construction, associating, to each
algebra X — SpanSet, a discrete opfibration Y — X. We will now describe this
construction in our terminology and show how it can be seen as the result of pulling

back along a classifying discrete opfibration.

Definition 2.6.1.1. We say that a homomorphism of globular multicategories F :
Y — X'is a discrete opfibration, when for each context I' in Y and each term f :
F(I') — A in X, there is a unique term f : I' — A such that F(f) = f.

Remark 2.6.1.2. Leinster [30, §6.3] gives the following equivalent definition: a ho-
momorphism of globular multicategories F : X — Y is a discrete opfibration if the

induced square

Term X
%
T TypeX Fi
Fo Term Y

T TypeY
is a pullback square.
Definition 2.6.1.3. Suppose that X is a globular multicategory, and that F : X —
SpanSet is an algebra of X. Then we define el(F), the globular multicategory of
elements of T, as follows:
e An n-type in el(F) is a pair (A,a) where A is an n-type in X, and a € FA.
It follows that an n-context in el(IF) amounts to a pair (I',7), where I" is an

n-context, v € F(T')'.

46



e Ann-term f: (I',y) = (A, a) in el(F) is an n-term in f : I' — A in X such that
F(f)(v) = a.

The next result now follows immediately:

Proposition 2.6.1.4. The canonical projection 7y : el(F) — X is a discrete opfibra-

tion.

Definition 2.6.1.5. We define SpanSet,, the globular multicategory of pointed spans,

as follows:

e A type of SpanSet, is a type M : A - B of SpanSet together with an element
m € M. It follows that a context I' in SpanSet, amounts to a context I' in

SpanSet together with an element v in the pullback I defined by T'.

e A term f : (Iy) — (A,a), sf - tf of SpanSet, is a term f : I' —
A, sf —»tf in SpanSet such that f(v) = a.

Let 7, : SpanSet, — SpanSet be the canonical projection. It is immediate from
this definition that m, is a discrete opfibration. Furthermore, our description of glob-

ular multicategories of elements makes the following alternative description evident:

Theorem 2.6.1.6. The category of elements of an algebra F : X — SpanSet is the
pullback depicted in the following diagram:

el(F) —— SpanSet,

| - |-

X—7F— SpanSet

Remark 2.6.1.7. Leinster [30] observes that, for each globular multicategory X, this
defines an equivalence between the categories of small discrete opfibrations over X and
algebras of X. Thus, Theorem 2.6.1.6 says that 7, is a classifying discrete opfibration:

small discrete opfibrations are precisely pullbacks of 7.

Remark 2.6.1.8. We are particularly interested in the case where X is a contractible
globular operad. In this case, an algebra C : X — SpanSet amounts to a weak higher
category, and the multicategory of elements construction allows us to construct a
globular multicategory from C. Explicitly, a k-type in el(C) is a k-cell in the higher
category C, and a term f : I' — A in el(C) amounts to a witness that the composite
of the pasting diagram I', using some operation f in X, is the cell A. It is notable
that we do not need any restrictions at all on the weakness of C in order for this
construction to work; whenever we have a weak w-category described as an algebra,

C, of a globular operad, we have an n-globular multicategory, el(C).
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Remark 2.6.1.9. An analogous analysis holds when C : P — SpanSet,, is an n-
category, for some finite n. In this case, the globular multicategory of elements of C

is an n-globular multicategory el,, P.

2.7 The Vertical Construction

Suppose that F : P — SpanSet is an algebra of a contractible globular operad P.
The globular multicategory of elements construction allows us to construct a globular
multicategory whose types are cells in F. In this section, we study a novel construction

of a globular multicategory whose terms are cells in [F, given good conditions on P.

Definition 2.7.0.1. We say that a normalised contractible globular operad P has

strict composition along 0-cells when the following conditions hold:

e For each £ > 0, and each [ > 0, there is a canonical compositor k-term

cf:ﬁ@ok(Do---@ok—)k:, cf —ﬁ—>cf L

l ti‘rrnes
Here we take the 0-ary sum to be the O-type 0. We require that compositors

are closed under composition, and that cf = id,.

e Interchange: Suppose that 7 is a 0O-trivial k-pasting diagram, and that f :
m — k is a k-term in P, for each [ > 0, we have that

(f @0 f @@ ficf = (@ cd‘m’) :

1ET

l times

where [ > 0, and f; is a p;-shaped pasting diagram for some p; with a unique
0-component. When [ = 0, we define the 0-ary sum on the left-hand side to be
the unique 0-term id, : 0 — 0.

Example 2.7.0.2. The terminal globular operad 1 has strict composition along 0-

cells.

Example 2.7.0.3. Whenever n > 2, and P is the weak n-category operad described
by Batanin or Leinster, P does not have strict composition along 0-cells since com-

position of 1-cells is not strictly associative and unital.

Example 2.7.0.4. Let PP be the 3-operad whose algebras are categories strictly en-
riched in the category of bicategories and strict 2-functors, with the cartesian product.

Then P has strict composition along 0-cells.
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In fact, we can generalise this last example in order to obtain a large class of con-

tractible globular operads with strict composition along 0-cells.

Definition 2.7.0.5. Let X be a globular multicategory. Then we define the globular
multicategory E(X) as follows:

e There is a unique 0-type x and a unique 0-term id,.

e Suppose that n > 0 and that 7 = 3(m;) ®g - - - ©9 X(m) is an n-pasting diagram.
A m-shaped n-term in E(X) is a sequence of (n—1)-terms f1, ... f; in X such that
fi is a m;-shaped. Composition of n-terms in E(X) is induced by composition

of (n — 1)-terms in X.

Remark 2.7.0.6. It is follows that an algebra of E(X) is precisely a category enriched

in the category of algebras of X with its cartesian monoidal structure.
The following result now follows immediately from the definition of E.

Theorem 2.7.0.7. If P is a contractible globular operad, then E(P) is a normalised

contractible globular operad with strict composition along 0-cells.

Proof. Suppose that P is a contractible globular operad. Then E(P) is clearly nor-
malised. When k& = 0 we define c? to be id,. When k& > 0, we define the compositor
c¢f to be the sequence (idj_1,- -+ ,idg_1) of length I. The conditions on compositors
are now easily verified.

We now verify contractibility of E(P). Suppose that n > 0, that 7 is an (n + 1)-
pasting diagram, and that g,h : M9 — n are term wise parallel n-terms in E(P).

When n = 0, we must have that ¢ = h = id,, and

7:}@01@0...@0£:§}0@0...20_
lt;r,nes lt;r,nes

Hence, we can define f : m —n-+1,9g - h by

f:(ldg,,ldo)
R

[ times
Suppose that n > 0, that 7 = 3(m1)®g- - -©p2(m;). Then my = 3(71)s GO0+ - - O 2() o

Furthermore, we must have that

g:(gl,...,gl), h:(hl,...,hl),

where g, h are parallel (7;)s-shaped (n —1)-terms in X. Hence, since [P is contractible,
for each 1 < i <[, there exists f': m; — n, g¢¢ -+ hiin P. Hence, f = (f',..., f}):
7 — n+1in E(P). Thus, E(P) is contractible. O
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Remark 2.7.0.8. Suppose that P is a normalised contractible globular operad with
strict composition along O-cells. Let F : P — SpanSet be an algebra of P. Suppose
that we have been given k-cells fi,... f; in IF such that tof; = sofi+1. Then we define

a notion of composition by:

froo faoo - fi =F(c)(f1 @0 f2 ®o - - - @0 f1)-

The properties of compositors ensure that the operation — oy — is associative, and
that the unit of oy at a 0-cell A € F(0), is F(cf)(A). Suppose that gy, ..., g are m-
shaped diagrams in F such that tyg; = sgg;11. Then we define the m-shaped diagram

g1 99 - - - 09 g; element-wise by setting

910 "% g1 = @(gl)i 09 *++ 09 (1)

1ET

= @F(Céﬁmi)(({h)i o -+ Oo (g1)s)

1em

= (@ F(c?m)) (G«gl)i 09+ 00 <gl>z~>>

1ET 1ET

=F(OQ ™) 9 @0 a0)-

€T
Suppose that 7 is a 0-trivial pasting diagram, and that o : 7 — k is a term in P.

Then Interchange implies that

=TF( (@ cf““”) ;0)(91 @0+ o 1)

=F((0®g -+ ®00);¢f)(g1 @0 1)

= F(0)(g1) 00 F(0)(g2) - - - 00 F(0) (1)
Definition 2.7.0.9. Suppose that P is a normalised contractible globular operad
with strict composition along O-cells. Let F : P — SpanSet be an algebra of P. Then

we define the vertical globular multicategory V(F) as follows:
e A O-type in A V(F) is a 0-cell A of F(0).

e AOterm f: A— Bin V(F)is a l-cell f: A — B in F(1). In this case, we
define oy to be the 1-term id; in P.

20



e For each 0O-cell A € F, and each n > 0, there is a unique n-type H'j such that
sHY = tH% = H" 'A. Given a O-type A in V(F), we say that an n-context I'

is A-simple, when each type in I' is of the form H';, for some n > 0.

e Suppose that n > 0. Given an A-simple w-shaped n-context I', an n-term
f:T = Hp, sf = tfin V(F) consists of an (n + 1)-cell

fosf—rtf
in IF, together with a (n + 1)-term
Of: XT —>n+1, 04 —+> 0Oy

in P. Now suppose that f: ' — A is a substitution. Then I" must be A-simple,
and A must be B-simple, for some 0-cells A, B € F(0). Let i € ¥A(n). Recall
that when n > 0, each ¢ € ¥A(n) can be viewed as an element i € A(n — 1).
When n = 0, the set XA (n) has exactly two elements, %, and *;, such that, for
all m > 0, and all j € ¥A(m), we have that soj = %, and toj = *;. We define
an n-cell f; in F by:

fi=<¢A in=0andi=x,

B ifn=0andi=x
We define an n-term ojc in P by

Oy ifn>0
fi=<qidy ifn=0and =%,

idg ifn=0andi=%

f:C)ﬁ? Of:®0fi'

IEXA IEXA

Hence we define

to be the corresponding Y A-shaped pasting diagrams in F and Term P respec-
tively,

e Suppose that we have an n-substitution f : I' -+ A, and an n-term g : A — A
in V(F). Then we define the composite f;g by:

EIF(Og)(J?) 0 g Of;g = Of; Qg
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e Composition is associative since

The middle equality follows from Remark 2.7.0.8.
e We define idy» by

1dH” = F( nH)(/_l), Oidw}‘ = idy41

e Composition is unital since, for any f: ' — A,

f
=TF(cg™)(B) oo f
IF(ido; )( )Oof

_ IF @ Cdlmz OO f
SN
@ Cdlm’L r

iexl

@ dlmz+1 o0 f_'

el

=idr; f
The middle equality follows from Remark 2.7.0.8.

Remark 2.7.0.10. An analogous analysis holds when C : P — SpanSet,, is an n-
category, for some finite n. In this case, the vertical globular multicategory V,,(X) is

an (n + 1)-globular multicategory.

Example 2.7.0.11. Suppose that C is a strict 2-category. Then there is a corre-
sponding wertical double category. The virtual double category V(C) associated to
this double category is such that:

e A O-type in V(C) are objects of C.

e A O-term in V(C) is a 1-cell of C.
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e For each object A € C, there is a unique 1-type Hy : A -+ A in V(C).

e A term of the form

A=——A - A

ol be [owe s

B H:B>B H:B\B

fl Yo lg

C : sy C
He

is the composite (1) 01 &) og ¢ : fogh = gogj. The coherence laws of C imply

that this notion of composition is associative and unital.

2.8 Representability

Globular multicategories are close cousins of the monoidal globular categories intro-
duced by Batanin [(] as a natural environment for studying higher categories. Every
monoidal globular category has an underlying globular multicategory, and the globu-
lar multicategories arising in this way are characterised by a representability property.
This correspondence is analogous to the characterization of monoidal categories as
(non-symmetric) multicategories which are representable in a suitable sense. A very
general statement of results of this flavour, including an unbiased variant of the results
of this section, can be found in [17]. Here, we will explicitly describe the relationship
between globular multicategories and monoidal globular categories.

Recall that a globular category C is a globular object in the category of categories.
Whenever M is an object (or arrow) in C(k) such that sM = A and tM = B, we
write M : A -+ B, just as we do for globular multicategories. Whenever A is an

object or arrow in C(0) we write A : x - *.

Definition 2.8.0.1 ( [(]). A monoidal globular category is an w-category internal to
the category of globular categories whose unit associativity laws hold up to isomor-

phism. This amounts to a globular category C together with:
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e for each | < k, type-wise composition functors

@12 C(k) x C(k) — C(k)

e for each k, a unit functor

Z:Clk)—C(k+1)

e natural transformations and axioms, mimicking those of a strict w-category up

to isomorphism.

When these natural transformations are all identities, we say that a monoidal glob-
ular category is strict. We denote the category of monoidal globular categories by
MonGlobCat.

Remark 2.8.0.2. Batanin [0] has proven a coherence theorem for monoidal globu-
lar categories: every monoidal globular category is equivalent to a strict monoidal

globular category.
Remark 2.8.0.3. Monoidal n-globular categories are defined analogously.

Example 2.8.0.4. Suppose that C is a strict n-category. Then C can be seen as a
strict monoidal (n — 1)-globular category SqC such that:

e A k-type in SqC is a k-cell in C.
e Type-wise composition comes from composition in C.

o A kterm f: M — N,sf - tfinSqC isa (k+ 1)-cell:

A-M,p

N

e Composition of terms also comes from composition in C.

Proposition 2.8.0.5. There is a functor Ug : MonGlobCat — GlobMult. This

functor is injective on objects and faithful.

Proof. Let C be a monoidal globular category. We define the globular multicategory

UgC as follows:
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o Ak-type M : A -+ Bin UgC is an object "M :"A7 —+ "B of C(k).

o Let I' = (O, 'z be a k-context in UgC. Repeatedly applying the type-wise

composition functors — ® — of C, we obtain an object

o — ® Zk*dimerxj

zel

of C(k) such that "T'7 : "sI'?7 -+ T¢I'". Here we need to choose an order
of composition. However, this choice is unique up to canonical isomorphism

because of the coherence theorem for monoidal globular categories.
e Akterm f:I" - M,sf -»tfin UgC' is a morphism
l_f—lzi_I‘T_)[_]\4—l7 [_SfT_Q_)rtf—l
in C(k).

e Suppose that g : A — T'is a k-substitution in UgC. Then the coherence axioms

of C induce a canonical isomorphism,

AT = ®y€A Ay g ®m€l" ®y€Az Zk_dim$|—<AfE)y—l = ®x€l",—A$—l'
We define g7 :TAT — T Tsg? —» Ttg ! to be the following composite:

& "9z
o zel

I—A—I — s ®x€F|—A€E—| s ® I—I‘m—l — l_]_"—l.

zel

e Whenever g : A — T is a substitution in UgC, and f : ' — M is a term, we
define
"fig'="f""gl, and Fidy ' = idr 4.

The coherence laws of C ensure that composition of terms in UgC is associative

and unital.
This assignment is easily seen to be functorial, injective on objects and faithful. [J

Suppose that we have a globular multicategory of the form UgC. Then we can
recover the type-wise composition of C by looking for terms satisfying the following

universal property:
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Definition 2.8.0.6. We say that an n-substitution f : I' = A, sf —+ tf in a globular
multicategory X is strictly representing when, for any m > n, any m-type A, and any

term-wise parallel (m — 1)-terms g5 : sA — tA and ¢; : tA — tA, the map
fi—
A=A g gl — T = A sfig. »1tfig]
is a bijection.

Example 2.8.0.7. Suppose that X = UgC. Let n > 1, and let M : A - B and
N : B -+ C be n-types in X. Define the n-type M ®,_1 N in UgC by

"M®, 1 NT="TM1®,_1 N

Then the morphism idrpg, -y in C corresponds to a term m : M ©,-1 N —
M®,_1N,idy -+ id¢ in UgC. We think of m as witnessing the type-wise composition
of M and N. Since composition with idysg, ,n is a bijection in C, the term m is

strictly representing in UgC.
This example motivates the following definition:

Definition 2.8.0.8. Suppose that I' is an n-context in a globular multicategory X.
We say that a strictly representing n-term mp : I' — @ T' is a compositor for T if:

e We have that n = 0, and mp = idr.

e We have that n > 1, and mr : m,r -+ myp, where mgp, myr are compositors

for sI', tI" respectively.
In this case, we refer to Q) I' as the composite of T'.

Remark 2.8.0.9. It follows that composites are well-defined up to unique isomor-

phism.

Arguing as in Example 2.8.0.7, it is clear that, for any monoidal globular category
C, every context I' in UgC has a compositor. In fact, this property characterises

globular multicategories of this form.

Definition 2.8.0.10. A globular multicategory X is representable if and only if each

context in X admits a compositor.

Proposition 2.8.0.11. A globular multicategory is in the essential image of Ug :
MonGlobCat — GlobMult if and only if it is representable.
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Proof. We have already seen the “if”-direction. For the “only if”-direction, suppose
that X is a globular multicategory, and that each context I' in X admits a compositor

mr : T'— @ T. Then we define a monoidal globular category C such that:
e An object of C(n) is a type of X.
e A morphism f: A — BofC(n)isaterm f: A— Bof X.

e The type-wise composite of n-types M : A -+ B and N : B —+ (' is defined to
be the target (A ® B) of the compositor of the n-context A ® B.

e The unit of an n-type A is defined to be the target @Q[A] of the compositor of
the (n + 1)-context [A].

The coherence laws of C now follow from the universal properties of the compositors,
and by construction we have that UgC = X. [l

Example 2.8.0.12. A virtual double category is representable exactly when it un-

derlies a pseudo-double category. See [17].

Example 2.8.0.13. Type-wise composites in SpanC can be computed as certain
limits; this essentially follows from the definition of Span. The unit of an n-type A
in SpanC is the (n + 1)-span A : A - A whose left and right legs are both identity

arrows.

Remark 2.8.0.14. Suppose that X is a representable globular multicategory. Then
terms in X can be composed type-wise. Suppose that f : ' — A, sf - tf is a
substitution in X. Let mp,ma be compositors of I' and A respectively. Then the

universal property of mr implies that there exists a unique
R Q=2 Qsf = Q.
such that mp; Q) f = f;ma.

Example 2.8.0.15. When f : I' — A is a substitution is SpanC, the composite
Rf: QL — QA is the following canonical arrow between limits

QT = ll/igrgfy RN EGHAIAy =R A.

From this point onwards, we identify MonGlobCat with the 2-category GlobMultg,
of globular multicategories, with chosen compositors, and compositor preserving ho-

momorphismes.
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2.9 Families Constructions

In this section, we generalise the families construction on categories (see [9]) to a
family (pun intended!) of constructions on globular multicategories. We will see that
these constructions freely add coproducts, in a suitable sense.

We will need to consider the differences between w-globular multicategories and
finite dimensional globular multicategories more carefully in this section. Hence, for
the remainder of this section, we suppose that X is a d-globular multicategory for

some 0 < d < w. For convenience of notation, we define [d] = {n finite | n < d}.

2.9.1 The Total Families Construction

Definition 2.9.1.1. There is a d-globular multicategory Fam([f] X whose types are

indexed collections of types in X. The assignment Famgﬂ : GlobMult — GlobMult

is strictly 2-functorial. We refer to this functor as the total families construction.

Proof. Let % be the unique (—1)-type of Famgﬂ X. Then we define I, to be the one-
element set {x}. We will define Iiy, to be the function id, : {x} — {*}. We now
define the n-types, n-terms, and various related data of Famgi] X, for each n € [d], by

induction on n.

e An n-type M : A -+ B in Famgl] X consists of, for each 2 € I4 and 5 € Ip, an

index set I/(, 7) together with, for each k € I,(7, ), an n-type
M(k) : A(i) = B(j).
Note that I; can equivalently be seen as an n-span of sets

IMZIA—4—>IB.

e Suppose that I' : sI" - tI" is a m-shaped n-context in Famgi] X. Then we have
a m-shaped diagram (Ir,).er in Type(SpanSet). Let Ir : I, - L be the
type-wise composite of this diagram; that is, Ir = limgep Ir,. For each y € T,

let m, : It — Iy, be the canonical projection from this limit. Let
Y y
I ®, 1 Lir = {i € Iir,j € Lip | 4,7 parallel in Type(SpanSet)}

For each (7,7) € Iy ®,-1 Lir, let Ir(4,7) be the collection of elements in the set
Ir mapping down to (7,7j) in Iy®,_1. It follows that each k € Ir (7, j) induces
a m-shaped n-context I'(k) : sI'(7) - tI'(j).
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An n-term f: ' - M,sf - tf in Famgl] X consists of, for each ¢ € I,r and

each j € I;r, a function

Ly In(i,5) = T (sf(0), 11 (),
together with a term
f(k) (k) — M(I;(K)), sf(i) = tf(5)
for each k € Ir(3, j).

Suppose that f : ' — A is an n-substitution in Farngi] X. We define Iy to be

the canonical function
lim Ify

Ir = limIy, — " limI, = I,.
T yeay yen v = A

For each i € Iyr,j € Iir and k € Ip(4, j), we define

f(k) = @fy(ﬂ'yk)-

yeEA

By construction, we have that f(k) : I'(k) — A(Iz(k)), sf(i)) -+ tf(j). Now
suppose that we have a term ¢ : A — M in Famgﬂ X. Then, for each 7, j, k as
above, we define I¢ (k) = I,(I;(k)) and

(f;9)(k) = f(k);g(Ip (k) = T(k) = MIz(k)), s(fi9) = t(f;9)

Since for any n-type M, we have that (O[M] = M , we have that Iy, = Ip.
Hence, we define the unit term idy, : [M] — M by

Lg,, = idy,,, idM<i) = idM(i) .

The associativity and the unit laws now follow from the corresponding laws in
X.

It is easily verified that this assignment is strictly 2-functorial. O

Example 2.9.1.2. Consider the terminal n-globular multicategory 1,,. Then FamL"] (1,)

o

Span,, (Set).

Example 2.9.1.3. A 0-globular multicategory is just a category C, and Fam([)o] C is

the usual families construction on categories (see [9]).
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Remark 2.9.1.4. Truncation commutes with the total family construction; for any
n € [d], we have a natural isomorphism tr, F aumgﬂ X 2 Fam!™ tr,, X.

Proposition 2.9.1.5. Suppose that X is representable. Then Faum([;ﬂ X s also repre-

sentable.

Proof. We define n-compositors in Fam([;ﬂ X by induction on n > 0. Suppose that I'
is an n-context. If n = 0, then @I = I' and we define mpr = idr. Suppose that
n > 1. and that I' is an n-context in Fam([f] X. Then we define the n-type @I by:

Igr = Q)(L)ser =1Ir
(R (k) = QR(A(k))zaer = QT (k)

We define the compositor mr : I' — @I, mgr - myp by setting, for each k €
Ir(i, ),

L (k) = ®(mIA)x:A€F

my (k) = mr)
Now suppose that f:I' — M, m,r; gs - myr; g; is an m-term in Famgﬂ X, for some
m > n. Then we define g : QI' — M, g - ¢+ by setting I, = I¢, and, for each
k € Ir(i,j), defining g(k) : Q@ T' — M, gs(i) - g:(7) to be the unique term such that
mr; g(k) = f(k). It follows that mr; g = f and that g is the unique term in Fam([f] X
with this property. O

2.9.2 Level-wise Families Constructions
Frequently, we only consider families at a particular level (dimension) or set of levels
of X.

Definition 2.9.2.1. Let S C [d]. Then we define Fam§ X to be the subobject of
Famgi] X such that:

e Suppose that n ¢ S and that M : A + B is an n-type in Fam®X. We require

the following diagram to be a pullback square:
Iy —— 14
L7
I — 162M

, where Ip2p; = Iiq ®,-1 Ly = Lip®,,11;5. In other words, for all (i, j) € Igns,
we require that I (i,7) = {x}. In particular when n < Min S, we have that
I,; = {x}. Thus, in this case, an n-type in Fam3 X can equivalently be seen as

an n-type in X.
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e When n € S, we do not impose any further restrictions on n-types or n-terms

(besides the restrictions on their source and target types and terms).

Remark 2.9.2.2. In the infinite dimensional case, we define
Fam® X = Fam? S.

Example 2.9.2.3. Suppose that X is a 1-globular multicategory with a unique 0-
type. Then X can be seen an ordinary multicategory, and Famio} X is the matrices

construction described by Leinster [30].

Remark 2.9.2.4. Truncation commutes with level-wise family constructions: when-

ever n < d and S C [n], we have a natural isomorphism
tr, Famj X & Fam? tr,,X.

Remark 2.9.2.5. Level-wise families constructions do not necessarily preserve rep-
resentability. Suppose that d = 1. Then every monoidal category (C,®,I) can be
viewed as a representable 1-globular multicategory, with a unique O-type, and whose
1-types are the objects of C. Let A be a set; that is, a O-type in Famio} (C). Then,
following [17], when C has small coproducts, and ® preserves them on both sides,
the globular multicategory Fam‘l{o}(C) is representable. In particular, when C has
an initial object 1 and ® preserves initial objects, we may define a compositor,

myy : [A] = Ha, ida -+ ida, of the 1-context [A] by

I ifa=d

N ifa;éa’ m[A](a) :id[.

Hala,d') = {
On the other hand, suppose that C does not have an initial object. Then Famio} (C)
need not be representable. For example, suppose that C is the category of non-empty

sets with the cartesian product as its monoidal structure. Suppose that A is a two-
element set, and let M be the 1-type in Familo} (C) defined by:

{x} ifa=4d

M(a,d) = {A ifa+d

Then, there is a unique term A — M, idy - id4. However, for any 1-type N : A —-
A, considering N(a,a’), for a # a’, we find that there must be at least four different
terms in [N — M, id4 -+ id4]. Hence, the 1-context [A] cannot have a compositor
in Fam‘l{o} ().
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However, level-wise families constructions do preserve a weaker notion of repre-

sentability.

Definition 2.9.2.6. We say that a d-globular category is representable up to level

[ € [d], when every [-context has a compositor for I’ <.

Proposition 2.9.2.7. Suppose that the globular multicategory X is representable up
to level . Then Fam!®(X) is representable up to level I.

Proof. Suppose that I’ < [, and that I" is an [’-context in Fam({il}(X). Then the

compositor of I' described in Proposition 2.9.1.5 is a compositor in Fam({il}(X). O

2.9.3 Coproducts

It is well known (see for instance [9][(3.5)]) that the families construction freely adds
small coproducts to categories. We can characterise the total and level-wise families

constructions by similar properties.

Definition 2.9.3.1. Let A = {A; : sA - tA},c; be a collection of parallel I-types
in X. A coproduct of A consists of the following data:

o An I-type [[,.; Ar: sA -+ tA, together with, for each i € I, an inclusion term

LiIAi%HAZ‘, idsA —Hith.

el
e Suppose that n > [. Suppose that I' is a m-shaped n-context in X such that,
for some I-variable z in I', we have that I', = [],.; A;. Suppose that z is not
Ar
and A; are parallel, there is a context I'[A4;/x], together with an inclusion term
f i T[A;/z] — T defined by

the source or target of any other variable in I'. Then, for each 4, since [[,.,

A ify=ux r {Li ify=ux

HA /)= {Fy if y # C idr, iy

for each y € m. When n = [, we have that LiF sidgr -+ idyr, and when n > [, we
have that ¢} : 4T — /', For any n-type B in X, we require that the induced

function
Diers—
' = B, g -+ h] ()—61> [['[A;/z] — B, sn,lLiF;g -+ tn,lLiF;h]
el

is a bijection.
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We say that X has coproducts at level | when every set of parallel [-types has a co-
product. When X has coproducts at every level, we simply say that X has coproducts.

Remark 2.9.3.2. Let S C [d]. There are a number of ways of defining the 2-category
GlobMultf[ of d-globular multicategories with coproducts at level [ for each [ € S.
Coproducts are unique up to unique isomorphism, and so it is natural to consider the
objects of GlobMultﬁ to be globular multicategories such that the required coprod-
ucts exist, together with homomorphisms sending each coproduct to some coproduct.
On the other hand, we could consider globular multicategories together with a choice
of coproduct, and homomorphisms which preserve these choices, either up to isomor-
phism, or strictly. Finally, it can be useful to require that these choices of coproducts
satisfy certain natural properties. For example, we might require that the coproduct
of a one element set {M} is exactly M. The advantage of some of these defini-
tions over others is that certain properties which, a priori, hold up to isomorphism
may in fact hold on the nose. Fortunately, all these ways of defining the 2-category
GlobMulth are equivalent, and for our purposes, will not need to worry about the

precise choice of definition.

Remark 2.9.3.3. A different notion of coproduct for monoidal globular categories
is studied in [06][§5].

Example 2.9.3.4. Suppose that X is representable. Then X has coproducts at level
[ if and only if the following conditions hold:

e Bach set of parallel I-types {M;}, ., has a coproduct [[,.; M; in the category
Type; X, and these coproducts can be chosen such that whenever ¢ : M; —

[1;c; M; is a canonical projection, we have that ¢ :idy —+ idp.

e For each k € [d] such that 1 < k < d — [, the unit functor Z* : Type, X —

Type;,; X preserves these coproducts.

e Whenever k£ < [ < n, composition of n-types along k-types, — ®; —, commutes

with these coproducts on both sides.

In particular, X = Spany(C) has coproducts if and only if C has small coproducts and

these coproducts are stable under pullback.

Example 2.9.3.5. The globular multicategory Famgﬂ X has coproducts. We define

the coproduct of a collection {M, : A - B},cg of [-types in Fam[f} X by setting

L, (i, 7) = ] T -

reR
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Hence, an element of Iy, (4, j) amounts to a pair (r, k), where r € R, and k € Ly, (; j).
Hence, we define '
(H Mr> (r,k) = M, (k).
reR
The inclusions are now induced by the universal property of coproducts in Set. This
argument also shows that FamgX has coproducts at level [ for each [ € S. This
assignment extends to a strict 2-functor Famj : d - GlobMult — d - GlobMult).

We can now state the universal property of families constructions.

Theorem 2.9.3.6. Let S C [d]. The families construction, Fam3 : GlobMult —
GlobMulty, is the (weak) left adjoint of the 2-functor U3 - GlobMulty; — GlobMult

that forgets coproducts at level | forl € S.

S
Famg

T
d-GlobMult 1 d -GlobMulty

~N_

Uii

Proof. First suppose that X is a d-globular multicategory. For each n-type M in
X, let xp; @ {x} — TypeX be the constant function such that xp;(x) = M. Then
we define the unit 13(X) : X — U Famj X to be the homomorphism sending each
n-type M € X to the following one-element family:

Lseoon (%) = {%}, i (X) (M) = .

Suppose that Y has coproducts at level [ for [ € S. Then we define the counit
e (Y) : Fam5 USY — Y to be the homomorphism such that

en(Y)(M) = [ M) T sMG) = ][] tM()

kely 1€l J€lim

The triangle identities hold up to isomorphism since, for each n-type M in UJY, we

have that
Uiei ompUH(W)(M) = J] »u(x) = ] M =M
ke{x} ke{x}

and, for each n-type M in Famg X, we have that

(et Fam o Famg i) () (M) = [T ({3, %argw)

kelyr
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and so
I( Fam$ o Fam3 n)(X)(M) ~— H {*} =1y

kel
(efy Famg o Famg ip) (X) (M) (k, %) = #agy (%) = M
O
Remark 2.9.3.7. In particular, when S = [d], it follows that the total families

construction is left adjoint to the functor which forgets coproducts at all levels.

Example 2.9.3.8. Combining Theorem 2.9.3.6 with Example 2.9.1.2, we find that

SpanSet is the free coproduct completion of 1.

Suppose that S C [d], and that T C [d] \ S. Then the same proof shows that we
have a 2-adjunction:

FamT

/\

d- GlobMulty, 1 d-GlobMulty™"

\_/

Ul
As a consequence of these universal properties, in order to freely add coproducts at
certain levels, we can iteratively apply families constructions at those levels in any
order. For example. when n is finite this allows us to re-obtain the total families

construction, Famgl], up to natural equivalence, as the composite:

Famn

{1}
GlobMult 2™ GlobMult!, =2y Fam") » GlobMult ™

More generally, even when S = {lg, [, ...} is infinite, Fam? is naturally equivalent to

the 2-colimit of the following diagram:

{to} {in} Uni1)
GlobMulg Femtel, - Famltnd o g looted Pamttd

In particular, When S = [w], the total families construction, Fam“!, is the 2-colimit

w

of the following diagram:

w - GlobMult Pt

P GlobMult %

Remark 2.9.3.9. Suppose that X is a globular multicategory with coproducts. Con-
sider the following diagram in GlobMult:

el €0 et
s Faml U s Fam 0% s X

Here, €} is the canonical arrow, taking coproducts at level 7, that is induced by the
counit of the adjunction U]ﬁi} - Fam®”. Then it is easily seen that Fam™! X is the
limit of this diagram in GlobMult.
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Chapter 3

Strict Homomorphism Types

We now describe what it means for an n-globular multicategory to have homo-
morphism types. A 1-globular multicategory has homomorphism types when each
O-type A comes with a 1-type Ha : A - A, together with a reflexivity term
ta: A— Ha, 1idy —» idy satisfying an analogue of the Yoneda lemma. In higher

dimensions, each type comes with a whole tower of homomorphism types,
A>HA7 Hiaﬂia SRR

resembling the towers of identity types present in intensional type theory. For each
level of this tower, we require a reflexivity term that satisfies an analogue of the
Yoneda Lemma.
The functor forgetting homomorphism types has a right adjoint:
U’H

/\
GlobMulty; 1 GlobMult

~_

Mod

A one-dimensional analogue of this result is already known: Crutwell and Shul-
man [17] have shown that the monoids and modules construction on virtual double
categories (see [17,30,31]), first defined by Leinster, has a universal property of this
form. We call our higher-dimensional right adjoint the strict higher modules construc-
tion. In the spirit of [20], we describe how the strict higher modules construction can
be obtained by applying a generalisation of the 1-dimensional monoids and modules
construction at each level (dimension) of a globular multicategory.

Many fundamental objects in category theory are the result of applying the
monoids and modules construction [17]. Perhaps the most well-known result in this

direction is that a monoid in the bicategory of spans of sets is precisely a category.
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Analogously, the data obtained using the strict higher modules construction turn
out to be fundamental objects in strict higher category theory. We describe how
the globular multicategory of strict higher modules in SpanSet is equivalent to the
collection of strict w-categories, strict profunctors between strict w-categories, and
strict higher transformations between these objects. We also show how strict higher

modules constructions are closely related to iterated enrichment.

3.1 Degeneracies

Suppose that x : A is a variable in a context I'. Then, there is a context, I' &, H 4,
obtained from I' by adding a homomorphism type at x; when studying homomorphism
types, we will frequently encounter contexts of this form. Similarly, we will often speak
of substitutions with a term (typically a reflexivity term) added at some variable.
Consequently, it will be useful to have an explicit description of these contexts and
substitutions. The types and terms added in this way are always degenerate, in the
sense that each such type (or term) has the same source and target type (or term).
Hence, we will first describe a process which adds a degeneracy to a labelled pasting
diagram, and then specialise this discussion to understand adding a degeneracy to

contexts and substitutions, which are, by definition, certain labelled pasting diagrams.

3.1.1 Adding degeneracies to pasting diagrams

Suppose that 0 < k < n. Let m be an n-pasting diagram, and let  be a k-cell of 7.
In this section, we describe an operation that “adds a (k + 1)-cell at 2”. Let D!
be the subobject of the representable D¥! such that

r€ DY) «—= I <k+1.

Thus, OD**! is generated by a pair of parallel k-cells. For example, the following
diagram depicts 0D?:
>

[ ] [ ]
~—_ 7

Let § : OD**! — D**! be the canonical subobject inclusion. Let V : D! — DF be
the map which identifies the two k-cells of 9D*+1. We define the globular set 7 &, H
to be the following pushout in G-Set:

oDkl Y Dk r

|

Dk+1

— 3

3
P
8
X
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Thus, whenever X is a globular set, to give a map 7@, H — X is to give a map
f 7 — X, together with a (k + 1)-cell H,, such that sH, = tH, = fx. For example,

when 7 is the following 2-pasting diagram,

Py ,
z ¢ B——C (3.1.1.a)
\_}(

g9
and x and y are as labelled in this diagram, then 7 @, H is the following globular set:

i
) e y
e s B0 (3.1.1.b)

g
, and 7 @, H is the following globular set:

A
z o B— C (3.1.1.¢)
N @
g

Hy
As these examples illustrate, for any choice of 7 and z, the globular set m@®, H is
not a pasting diagram: the added cell H, has the same source and target, namely z,
and no cell in a pasting diagram can have this property. Nonetheless, we can define

a pasting diagram that approximates m &, H.

Definition 3.1.1.1. Suppose that 0 < k < n. Suppose that 7 = (7,...,7m) is an
n-pasting diagram, and that z is a k-cell of 7. We define an n-pasting diagram 7 &, H
together with a (k + 1)-cell H, in 7™ &, H by induction on k.

First suppose that £k = 0. Then x = (i) for some 0 < i <[, and we define

T®rH = (M1, Ty X, Titdy ooy L)
= (m1,...,m) @ D' ©g (Wit1,...,m)

We define H, € (m @, H)(1) to be the unique 1-cell of the summand D!.
Now suppose that & > 0, and that = = (i,2’) for some 1 < i < [ and some
x' € mj(k — 1). By induction, we have already defined m; ®,» H. Hence, we define
T Dy H = (7T17 ceey T, T Dy Dka Tit+1y - - - 77[_1)

= (1, ..., Tim1) @0 B(m B H) O (Tig1s - - -, )

By induction, we have defined a k-cell H, in m; @, H. Hence, we define H, to be
the corresponding (k + 1)-cell in the summand X(m; @, H)(k + 1).
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Example 3.1.1.2. Suppose again that 7 is the 2-pasting diagram (3.1.1.a)

f
>
x ﬂfb B> C
~
g
and x and y are as labelled in this diagram. Then, m &, H is the following pasting
diagram:
f
>
vo 2z ¢ B—1sC (3.1.1.d)
\g)

and 7 @, H is the following pasting diagram:

SN
A e B |mC (3.1.1.e)
0 T

1

In the preceding examples and throughout this thesis, we adopt the convention
that sH, = zo and tH, = x;. This illustrates the key difference between 7 @, H and
T @, H: the former adds a loop H, at x such that sH, = tH, = x, while the latter
replaces x by a (k+ 1)-cell whose source and target are distinct k-cells. The following

result now formalises this observation and describes how 7@, H approximates 7 @, H.

Proposition 3.1.1.3. There exists a map of globular sets QF : m &, H — 7w, H
such that, for any globular set X, to give a map

fimd, H—X

such that sf(H,) =tf(H.) is to give a map

such that f = fo Q7.

Proof. We proceed by induction on k. First, suppose that £ = 0. Then we de-
fine QT to be the map induced by including (7, ..., ;) and (m4q,...,m) into 7 =
(m1,...,m), and by sending H, to H,. Now suppose that & > 0. Then x = (i,2').
We define Q7 to be the map induced by including (7, ..., m;) and (w41, ..., m) into
m = (m,...,m), and by defining the component of QF at X(m; &, H) to be XQ;.
The required property of Q7 is now easily verified. O
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Example 3.1.1.4. Suppose once more that 7 is the 2-pasting diagram (3.1.1.a). The
map QT : ™ ®, H — 7®, H is the quotient map from (3.1.1.d) to (3.1.1.b) sending
zo — x, 21 — x and H, — H, and fixing all other labels. The map Qy is the quotient
map from (3.1.1.e) to (3.1.1.c) sending yo — v, y1 — y and H, — H, and fixing all
other labels.

Proposition 3.1.1.5. Suppose that 7 is an n-pasting diagram. Suppose that x is a
k-variable of m such that k < n. If x ¢ sgm. then we have the following alternative

description of m ®, H.:
TP, H= @p;””

yem
where

7T71‘ —_—
py -

D1 o, DI™Y  ifdimy > k and s,y =«
Ddimy otherwise

Similarly, if © ¢ tym, then
. H=_)q"

yem

where .
— Ddmy o, D* ifdimy >k and tyy = x
@ = Ddimy otherwise

Proof. Suppose that p is a k-trivial pasting diagram. Then, we have that

k+1 _ sk+1)0 _ yk+1 0 _ k+1
D =D = (DY = (¢) df

yep yeXk+1ly
where
g YAMIDO if dimy > k
v IDYmY  otherwise
DM ifdimy > k
| DYmY  otherwise
Hence,
PYon Dk+1 _ @(Ddlmy Or dl;ﬂ)
yep
and

D o, D= Q(dlfl Ok Ddimy)'
yep
We will now prove the first identity of the proposition. The second follows by
a similar argument. Suppose that 7 = (my,...,m). We proceed by induction on k.

First, suppose that £ = 0. Then, x = (i) for some 0 < i < [. For each cell y in 7 such
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that dimy > k, we have that syy = * <= y € m;. Combining this with the fact
that (m;) is O-trivial, we obtain
W@mH - (7T17"'77Ti> ®0D1 ®o (7.‘-724-17"'77”)
= (M1, ..., 1) g (m @9 DY) @ (i1, .- -, )

= @ (Ddimy) ®o @ (Ddimy ®o dzl;) ®o @ (Ddimy)

YE(T1 50y Ti—1) ye(m;) YE(Tig154,71)
_ T
- @ Dy

yem

Now suppose that k£ > 0, and = = (i,2’). By the inductive hypothesis, we have that

T By Hoy = ®y6m‘ pzi’x'. Furthermore, it is easily seen that

Sr,a’

>py" =1y

Hence,

Z(’ﬂ‘i Dy Hx’) — @ p?ﬂ'hx/’

yeXm;
However, by the inductive hypothesis, we have that
T EBx H = (7T1, ey i1, T @x/ Hx/, Tit1y - - 77Tl)

= (m1,...,Ti—1) ©o 2(m; ®w H) Oo (Tig1,- .., ™)

= O O™e OEHe () (D)

YE(T 1,0y 1) ye(mi) YE(Ti1,0ym1)
o T,
- Opy )

yem

]

The following two propositions follow straightforwardly from the definition of 7w,

Ha.

Proposition 3.1.1.6. Suppose that 0 < k < n. Suppose that w is an n-pasting
diagram, and that x is a k-cell of m. We have that

TOyH Dy H =70 H Dy, He

Proposition 3.1.1.7. Suppose that w is an n-pasting diagram. Suppose that x # y

are distinct cells of m such that dimx < n and dimy < n. Then,

re.He,H =1, Ho, H
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These propositions allow us to understand repeated applications of — & —. Suppose
that S{x',... 2!} C m(k) is a set of k-cells. Then, repeatedly applying Defini-

tion 3.1.1.1, we obtain a pasting diagram
TEsH=mPp HPB2HBs - BuH

Furthermore, this pasting diagram does not depend on the order of the z;. The
following alternative description of 7w @ H g generalises Proposition 3.1.1.5, and follows

by a similar argument.

Proposition 3.1.1.8. Suppose that 7 is an n-pasting diagram. Suppose that x is a
k-variable of m such that k < n. If x N spw(k) = (0. Then, we have the following

alternative description of m @, H.:

TPhsH = @p;’z

yem
where .
o D1 @, DYy ifdimy > k and spy € S
P, = .
Y Ddimy otherwise
Similarly, if x Ntxw(l) =0, then
rosH=0)q"
yem
where

. Ddmy o, D*! ifdimy > k and tpy € S
Y Ddimy otherwise

3.1.2 Adding degeneracies to contexts and substitutions

Suppose that X is a globular multigraph, that I' is a m-shaped n-context in X, and
that 2 : A is a k-variable in I'. Then, whenever H : A -+ A is an (k + 1)-type in X,
we define the (7 @, H)-shaped n-context, I' @, H, to be the map © @&, H — Type X
induced by Definition 3.1.1.1 and the following dotted arrow:

oD+ Yy Dk T 7
il |

DFH > T D, H

TypeX
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Suppose that f: ' — A is a wm-shaped substitution, and that y is a k-variable in A.
Suppose that h: f, - f, is a (k+1)-term in X. Then, similarly, there is a canonical
(m @, H)-shaped substitution f @, h induced by Definition 3.1.1.1 and the following

dotted arrow:

oDkl Y, Dk Y s

| 1

Dk+1

+ H

,\

vTerm X

h

More generally, suppose that S = {x1: Ay,..., 2 An} C T'(k) is a set of k-
variables. Suppose that for each ¢, we have a type Ha, : A; + A;. Then there
is a canonical ™ g H-shaped context I' ©g H defined by

I'eg H :F@xl %Al Dz, "'@:pmHAm
This context does not depend on the order of the ;.

Remark 3.1.2.1. By Proposition 3.1.1.5, if S N s,w(k) = 0, we have that

resti= ) P*

y:Bel

where

B otherwise

o Ha, O ifdimy >k and spy = z;
oY
y:Bel

Similarly, if S N¢xw(k) = 0, then for each variable y : B in I', we have that

TosH= ) Q"

y:Bel

where

T _ B oy Ha, ifdimy >k and ty = 2,
%"= @ {B otherwise

y:Bel’

A similar statement holds for terms and substitutions.
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3.2 Definition

Now that we have defined what it means to add degenerate types to a context, we can
describe what it means for a globular multicategory to have homomorphism types.
Firstly, we require that each n-type A be equipped a homomorphism (n + 1)-type
Ha and a reflexivity term v4 : A — Ha. Secondly, composition with reflexivity
terms should give a bijection between terms which removes homomorphism types

from source contexts.

Definition 3.2.0.1. A reflexive globular multigraph consists of a globular multigraph
X together with, for each n-type A, a homomorphism (n + 1)-type

Ha: A+ A
and a reflexivity (n + 1)-term
ITAZA—>7'[A, idg —+—id4 .

A reflezive globular multicategory is a globular multicategory together with a choice

of reflexive structure for its underlying globular multigraph.

Definition 3.2.0.2. Suppose that X is a reflexive globular multigraph. Let 0 < k <
n. Suppose that I' is a m-shaped n-context in X, and that x : A is a k-variable in I'.
It follows that we have a canonical (7 @, H)-shaped context I' ®, Ha. We define
the (m @, Ha)-shaped reflexivity substitution

T =T, Ha

by tL = idr @,t4. When I is clear from the context, we will simply denote this
substitution by t,. When £ =n — 1, we have that

I'®, Hy s = tI, tg sidgr —— idyr,
and, when £ < n — 1, we have that
I'®,Ha:sI' ©y Ha —— t1 @, Ha, R S Lo

More generally, suppose that S = {z; : Aj,..., 2y : Ay} is a set of k-variables in
[, for some k < n. Then, we define a context I' ®g H, and a substitution vk : ' —
' s H by

T Ds H=T @ml HA1 @acg T ®$m HAm? tg‘ = idF ®$1t141 @wz e @l'm Ay -

This definition does not depend on the order of the x;.
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Example 3.2.0.3. Suppose that I' is the following partially labelled 2-context

o/ADA —
N

Suppose that x : A is the 0-variable whose type, A, is labelled in this diagram.
Suppose that y : M is the 1-variable whose type, M, is labelled in this diagram.
Then I' @, H 4 is the following context:

./;DA L) ;o
R

and tL is the following substitution:

N
F by
W

[ ]
A

T

ﬁ/

On the other hand, we have that I ©, Hs is the following context:

I

° %A—Ho

<R

5



and t{, is the following substitution:

Definition 3.2.0.4. Suppose that X is a reflexive globular multicategory. Suppose
that 0 < k < n. Suppose that A is a k-type in X. We say that X has a strict
homomorphism type at A when, for each k < n, each n-context I', each k-variable
x : Ain I', and each n-type M, and each pair of term-wise parallel (n — 1)-terms

g:sl' — sM, h:tI' — tM, the composition map
I._
[F @CB HA — M: g — h] %—7> [P — M: Sn—ltm;g — tn—lt:c; h]

is a bijection with inverse J,. We say that X has strict homomorphism types when
X has a homomorphism type at A for each k-type A. We denote the 2-category
of globular multicategories with chosen strict homomorphism types, homomorphism

type preserving homomorphisms, and transformations between them by GlobMulty.

Remark 3.2.0.5. Suppose that n is finite. Then, we say that an n-globular mulitcat-
egory X has strict homomorphism types when X has a homomorphism type at A for
each k-type A with £ < n. We denote the 2-category of globular multicategories with
chosen strict homomorphism types, homomorphism type preserving homomorphisms,

and transformations between them by n - GlobMulty.

Remark 3.2.0.6. In the terminology of Definition 2.8.0.6, a globular multicategory
has homomorphism types when every reflexivity substitution is strictly representing.
Thus, globular multicategories with homomorphism types occupy a middle ground

between general globular multicategories and representable globular multicategories.

Remark 3.2.0.7. Suppose that A is a k-type in X in a globular multicategory. Then,

strict homomorphism types of A are unique up to unique isomorphism.
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Remark 3.2.0.8. Suppose that f: ' — M is an n-term in a globular multicategory

with homomorphism types. Suppose that n > [. Let S = {zy : Ay,..., 2 : A} C

['(I) be a collection of [-variables in I'. Then there is a unique term
Is(f) : T DBy, Hay By -+ By Ha,, > M

such that tl; Js(f) = f. We have that

and this definition does not depend on the order of the x;.

3.3 Examples and Properties

Example 3.3.0.1. Suppose that A is a O-type in a 1-globular multicategory. Then,

a homomorphism type at A consists of a 1-type H 4 together with a 1-term

A——A

| vea ]

A—— A
Ha

such that, for any m,n > 0, and any sequences 1-types (M; : B;_1 -+ B;)o<i<m, and
(N; : Ciy + Cy)o<i<n, such that M, = A, and Cy = A, pre-composing with the
substitution

M | ﬂ — a0
RREE 5 > A N Nn>0"
defines a bijection between terms of the form
M1 Mm HA Nl Nn
By +—~ - —4+— A —~+— A —~4— - —+— C,
| : |
D | » I
o)
and terms of the form
M Mpm Ny Ny,
By — — A — — C,
| : |
D | y |
o)



Thus, strict homomorphism type in 1-globular multicategories are precisely the hor-
izontal units described by Crutwell and Shulman [17].

Ibid., the monoids and modules construction for virtual double categories is ex-
hibited as the right adjoint of the 2-functor which forgets horizontal units. Many
familiar collections of “category-like” objects can be seen as the result of this con-
struction. Hence, any such collection gives rise to a 1-globular multicategory with

homomorphism types.

Example 3.3.0.2. Let C be a monoidal globular category. Then, following Re-
mark 3.2.0.6 the corresponding globular multicategory UsC has homomorphism types.
In order to make this explicit, let A be an n-type in UgC. Then we define H 4 to be
the (n 4 1)-type such that

"Hal=Z(A).
The (n + 1)-context [A] in UgC corresponds to the object "[A]" = Z(A) in C, and so
we define the reflexivity term ty4 : [A] — H 4 in UgC to be the term corresponding to

the identity arrow
idz(A) : Z(A) — Z(A)

in C. Now suppose that we have n-context I' in Ug(C), and a k-variable z : A for
some 0 < k <n. Then '—tg—' T =TT ®, Ha'is a coherence law of C that adds a

unit Z(A). Consequently, "tL 7 has an inverse
UF
"M@, Ha'! —— T
Whenever f: ' — M is an n-term in Ug(C) we define J,(f) : I' &, Ha — M to be
the term in UgC such that "J,(f)" is the following composite:

Uy "

T @, Ha' > T > M

in C. It follows that J, is the inverse of composition with tg.

Example 3.3.0.3. For any category with pullbacks, the globular multicategory Span(C)
has strict homomorphism types. For each n-type A, the homomorphism type H4 :
A - A is the trivial span A da g day A, and the reflexivity term t4 : A — H 4 is
the identity arrow idy : A — A.

Example 3.3.0.4. The terminal globular operad 1 has strict homomorphism types.
We define H,, = n + 1, and we define ¢, to be the unique term n — n + 1. For
each f : m — n, and * € 7, we define J,(f) to be the unique term such that
Jo(f) :m @y Ha — n.
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Example 3.3.0.5. Suppose that P is a contractible globular operad with strict ho-
momorphism types. Then the contraction ! : P — 1 has a strict homomorphism type

preserving section F : 1 — P defined inductively by

F(t,) = t,, F(32(f)) = 3(F(f)).

See Chapter 5 where we show that 1 is freely generated from a 0-type by adding strict
homomorphism types. We conjecture that this result implies that algebras of P are

equivalent to strict w-categories in an appropriate sense.
Proposition 3.3.0.6. Discrete opfibrations reflect strict homomorphism types.

Proof. Suppose that X is a globular multicategory, and that A is an n-type in X with
a strict homomorphism type. Suppose that F : Y — X is a discrete fibration, and
that A is an n-type in Y such that F(A) = A. We define t; : A — H; to be the
unique term in Y such that F(t;) = t4: A — Ha. Suppose that m > n, and that I'
is an m-context in Y, and that = : A is a variable in I'. Suppose that f : ' — M is
an m-term in Y. Then we define J,(f) : I' &, Ha — M’ to be the unique term in Y
such that F(J.(f)) = J=(F(f)) in X. By definition of t 3, we have that

F(r3;3:() = 53 3.(F(f) = F(f).
Hence M = M’ and f = t.;J.(f). On the other hand, whenever g : I' &, H4 — M

in Y we have that

F(3.(t5; 9)) = 3.(F(r; 9)) = 2T F(g) = F(g)

and so J.(tyz;9) = ¢g. Hence, we have defined the data of a homomorphism type at

A. ]

Corollary 3.3.0.7. Whenever X has strict homomorphism types and F : X —
SpanSet is an algebra of X, the globular multicategory of elements el(F) has strict

homomorphism types.

Proof. This follows from the fact that the canonical projection 7y : el(F) — X is a
discrete opfibration. O

Remark 3.3.0.8. Proposition 3.3.0.6 can alternatively be proved by observing that
the globular multicategory of pointed sets SpanSet, has strict homomorphism types,
the universal discrete opfibration SpanSet, — SpanSet preserves homomorphism
types, and the forgetful functor Uy : GlobMultyy — GlobMult creates pullbacks.
The result now follows, up-to-size-constraints from Remark 2.6.1.7. See also Propo-
sition 4.2.1.7 and Corollary 4.2.1.8.
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Example 3.3.0.9. Combining Corollary 3.3.0.7, and Example 3.3.0.4, whenever
C : 1 — SpanSet is a strict w-category, the globular multicategory el(C) has strict

homomorphism types.

Example 3.3.0.10. Suppose that C : 1 — SpanSet is a strict w-category. Then
the vertical globular multicategory V(C) has strict homomorphism types. For each
n-type 1% in V(C) we define Hym = H’iH'. We define tym : Hy — M4 so that

— .42
Ty _1dA )

and so that Oty is the unique term n 4+ 1 — n 4+ 2 in 1. The unit laws of C now
imply that this data define a homomorphism type. In fact, this is the objects-part of
a fully-faithful functor V : Strw-Cat — GlobMulty.

Example 3.3.0.11. Analogous results hold for n-globular multicategories and n-

categories, when n is finite.

Remark 3.3.0.12. Suppose that k£ < n < w. Restricting the truncation functor to
the subcategory of globular multicategories with homomorphism types, we obtain a

functor try : n - GlobMulty, — k- GlobMulty. The following diagram commutes:

n - GlobMulty —~ k- GlobMult

| Joe

n - GlobMulty, — k- GlobMulty

) |

n - GlobMult — M- GlobMult

That is, truncation functors commute with the functors forgetting representability,
and homomorphism types. Additionally, the truncation functor tr; has a fully faithful
left adjoint Ly, : k- GlobMulty — n - GlobMulty,. We typically identify k-globular
multicategories with strict homomorphism types with n-dimensional globular multi-
categories with strict homomorphism types using L. However, there is a subtlety
to this identification. Let Uy : GlobMultyy — GlobMult be the functor forgetting

homomorphism types. Then, the following diagram of left adjoints does not commute:

k- GlobMulty, —5 1 - GlobMulty

on | % |ow

k - GlobMult ———n- GlobMult
trk
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In order to see this, suppose that X is a globular multicategory with homomorphism
types. Then, for any m > k, the globular multicategory Li,, UxX has no m-types,
while an m-type in the globular multicategory L, X is an iterated homomorphism
type of a k-type in X. On the other hand, we do have the following commutative
diagram:

k- GlobMulty —5 7 - GlobMults

| Joe

k - GlobMulty < - GlobMulty

k

In contrast, the corresponding result does not hold for plain globular multicategories;

the following square does not commute:

k- GlobMulty —5 1 - GlobMults,

vs | b |us

k - GlobMult ——— n - GlobMult
try

This is one way in which globular multicategories with homomorphism types are
more similar to representable globular multicategories than ordinary globular multi-
categories. As further examples of this phenomenon, the globular multicategory of ele-
ments construction and the vertical construction commute with Ly, : k-GlobMulty, —
n - GlobMulty,. However, they do not commute with Ly, : k- GlobMult — n -
GlobMult.

3.3.1 Free Results

Let Uy : GlobMultyy — GlobMult be the functor forgetting homomorphism types.

We will see in this section that Uy satisfies many good properties by general results.

Proposition 3.3.1.1. The 2-categories GlobMult and GlobMulty, are locally finitely
presentable. Furthermore, the strict 2-functor Uy has a strict left 2-adjoint.

Ly
/_\
GlobMult 1 GlobMulty

~N_

Un
Proof. Enriched Gabriel-Ulmer duality tells us that there is an equivalence of 2-
categories between the 2-category of finitely complete categories (or equivalently es-
sentially algebraic theories) with limit preserving functors between them and the 2-
category of locally finitely presentable categories with finitary right adjoint functors

between them. This result is proved in the enriched setting in [29].

81



The definition of GlobMult (and GlobMulty) exhibits the category of globular
multicategories (with homomorphism types) as the category of models of an essen-
tially algebraic theory. We can view these essentially algebraic theories as being
Cat-enriched by considering Type(X)(n) to be a category and not just a set. With
this convention, the 2-category GlobMult (or GlobMulty) is the category of models
of a Cat-enriched essentially algebraic theory. Furthermore, Uy is a functor forgetting
some of this essentially algebraic structure, namely the homomorphism types. Hence,
applying Cat-enriched Gabriel-Ulmer duality, we immediately obtain the desired re-
sult. O

Another useful property of Uy, can also be obtained from this analysis:
Proposition 3.3.1.2. The forgetful functor Uy, is conservative (reflects isomorphisms).

Proof. This is true in general of functors forgetting essentially algebraic data. We will
describe this result explicitly for clarity. Suppose that f : X — Y is a homomorphism
of globular multicategories with homomorphism types and that ¢ : Y — X is an

inverse homomorphism (not necessarily preserving homomorphism types). Then
g(Ha) = g(Hpga) = 9(f(Hga)) = Hga
g(va) = g(vpea) = 9(f(vgs)) =tga

and so g also preserves homomorphism types. O]

3.4 The Strict Higher Modules Construction

While the left adjoint of Uy : GlobMult — GlobMult exists by a general argument,
the construction of the right adjoint is more involved. Our aim in this section is to
describe how a higher-dimensional analogue of the monoids and modules construction
allows us systematically to construct “higher category-like” objects together with

higher notions of transformation and module. We will prove the following theorem:

Theorem 3.4.0.1. The forgetful functor Uy : GlobMulty, — GlobMult has a right

adjoint.

Crutwell and Shulman [17] have shown the 1-dimensional version of this result:
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Definition 3.4.0.2. A monoid in a 1-globular multicategory X, consists of a 0-type
A together with a 1-type H4: A - A, a multiplication 1-term

A H.A\ A H.A\ A
TV
A | s A
Ha
and a unit 1-term
A=——A
| v
A—4+— A
Ha

satisfying associativity and unit laws. A module is a 1-type M : A —+ B with actions
on the left and right by the monoids A and B. These are 1-terms of the form:

A ,HIA\A ]\|4 B A ]\?\B IJIA\B

PR N T

A | s B A | s B
M M

These 1-terms must be compatible with the multiplication and units of A and B.
Monoids and modules are the types of a 1-globular multicategory Mod X, and this is
the objects-part of a strict 2-functor Mod : 1 - GlobMult — 1 - GlobMulty.

Theorem 3.4.0.3 ( [17]). The monoids and modules functor Mod : 1 - GlobMult —
1 - GlobMulty, is right adjoint to the functor Uy : 1 - GlobMult — 1 - GlobMult that

forgets homomorphism type data.

Hence, in order to generalize this result to higher dimensions, we describe higher
dimensional versions of monoids and modules, and exhibit a higher dimensional mod-
ules construction Mod : GlobMult — GlobMulty, as the right adjoint of Uy. We first
provide an informal overview of the notions of higher modules and their homomor-

phisms. Then we give a more detailed account of this construction and its universal

property.

3.4.1 Overview

For each n, we refer to an n-type in Mod X as an n-module in X. A 1-module,
M : A —+ B in X can be acted on by its 0-source and O-target A and B. These

actions amount to terms whose source contexts are of the following form:

A, 4 M B, AN, p %, B
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More generally, n-modules can be acted on by their k-dimensional source and target

modules for all £ < n. For example, a 2-module O, depicted as

can be acted on by A, B, M and N. Associated to these two actions are multiplication

terms whose source contexts are

—— B

and

respectively. We refer to n-terms in Mod X as n-module homomorphisms. Like the
module homomorphisms of the 1-dimensional monoids and modules construction,
higher module homomorphisms satisfy equivariance laws. For example, given a ho-

momorphism f with the source context

M
p
ﬁR N
A—-N—> B ﬁT C,

there are two ways of building terms out of f and actions involving Hp: one is induced
by the actions of Hp on R and S, while the other is induced by the action of Hpg
on T'. We require that these two terms agree. Homomorphisms can be composed
because given composable homomorphisms f and g, the equivariance laws of f and

g can be used to construct the equivariance laws of the composite f;g.

3.4.2 Level-wise Modules Constructions

Our tactic for making this description precise will be to first describe the actions of
[-types on n-modules separately for each [, and then later to combine these level-wise

modules constructions.
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Definition 3.4.2.1. Let [ > 0. A globular multicategory with homomorphism types at
level [ is a globular multicategory X together with a choice of homomorphism (I + 1)-
type for each I-type in X. Let S C [d]. We denote by GlobMulti the category of

globular multicategories with homomorphism types at level [ for each [ € S.

Fix [ > 0. Let Uq{{l} : GlobMultLl} — GlobMult be the functor forgetting homomor-
phism types at level . We will define a functor Mod” : GlobMult — GlobMult !

such that we have an adjunction of the following form:
vl

GlobMult! 1 GlobMult .
\/

Mod {1}
This functor behaves much like the 1-dimensional monoids and modules construction.
Indeed, the monoids and modules construction on virtual double categories is easily
seen to be a special case of the construction presented here.
Let X be a globular multicategory. We now define a globular multicategory
Modt¥ X e GlobMult!”. Roughly speaking, the types of Modt¥ X are defined so
that:

e When n < [, an n-type in Mod!? is an n-type in X.

e When n = [, an n-type in Mod™ is an I-type A in X together with an (I+1)-type
‘H 4, and associative and unital multiplication and unit terms. Thus, [-types are

monoids.

e When n > [, an n-type in Mod{"} is an n-type M in X together with actions of
s;M and t;M on M. These actions satisfy axioms saying that M is a bimodule

over its [-source and [-target.
The terms are defined so that:
e When n < [, an n-term is just an n-term in X.

e When n =1, an n-term f : I’ — A is an n-term of X respecting the multiplica-

tion of the [-types in I' and A. That is, an n-term is a monoid homomorphism

e When n > [, an n-term is an n-term of X satisfying certain equivariance laws.

That is, an n-term is a module homomorphism.
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We will make each of these cases precise inductively. First, we consider the most

straightforward case.

Definition 3.4.2.2. Suppose that n < [. Then, an n-type M : A - B in Mod{"} X
consists of an n-type My : My -+ By in X. An n-term f : ' — M, sf -+ tf in
Mod X is an n-term fy : Ty — M, (sf)o = (tf)o in X. Composition of n-terms is

composition in X.
Next we consider the case where n = [.

Definition 3.4.2.3. An [-monoid in X consists of an [-type My : Ag + By in X
together with:

e An (I + 1)-type Hpyr : My — My in X
e A multiplication (I + 1)-term my; : Har @ Har — Hagy, idp, - idyy in X
e A unit (I + 1)-term vy : M — Hypy, idpy, -+ idyy in X
We require that multiplication is associative and unital; that is
(mar O idyy,, );mayr = (idy,, ©imay); may,

and
(ITM @l idHM);mM = idHM = (ldHM @ltM);mM.

Example 3.4.2.4. A 0-monoid in X consists of a 0-type Ag, a 1-type Ha : Ay + Ao,

a multiplication 1-term

H H
AO iA > Ao iA AO

L

~

Ay 4 > Ao
and a unit 1-term
Ay —— Ay
| [ |
A()TAO
such that
Ay == Ay 4 A, 0o Ay Ay Ay
| 0 | 1 e | e
Ay — = Ay = Ay = | | = A == 40 5> 4
B RS
Ap i > Ag Ay 7 > Ag
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and

Ay LN Ay Ha, Ag Ha : Ha A, Ha
R TR
Ao 7 > A Y Ay T Ao e N

| o H B
Ao 7a > Ao it y Ay

Example 3.4.2.5. A 1-monoid in X consists of a 1-type M, : Ay — By together with
a 2-type Hys : My -+ My and multiplication and unit 2-terms

Mo

Ao \HM V{/
HMY;(VIO
My BO
mar
Ay Mo
\ Fro %w
My - 0
such that
AU Humr
7
AO - MO Mo// BO
" \ |
ta
e
p— p— \ \MO
may
H]M
MO \_/, AO
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and

@\A‘J |
s Y/ s

Wy W
By B

Definition 3.4.2.6. An [-type in Mod!” X is an l-monoid in X.

0

Suppose that T' is an l-context in Mod"} X. Then, by construction, there is an
underlying context I'g = (O, ()0 in X. Suppose that S = {z1: Ay, ... 2 1 Ay} is
a set of [-variables in T'. Then, we define the (I + 1)-context Hy : T' - T by

Hg:FO®SH:FO@11 HA1 @xg@kaAk

Similarly, we define the (I + 1)-terms tg : I' — H, idp - idr, and mL : HL O, HE —
Hg, ldp —+ ldp by

t = idp @4, ta, Day - Bay tay, mg = idp @pyMa, Bgy -+ Dyy Ma,, -
In the the maximal case, when S = I'(l), we define
Hr = Hig, tr = T, mp = mp.
We denote the complement of a set S € T'({) by S. When S = {fzz\c/}, we write th = tlng}.

Definition 3.4.2.7. An [-monoid homomorphism f : ' — M, sf -» tf in X consists
of an I-term fo : T'g — Moy, (sf)o + (tf)o in X, together with an ({ + 1)-term

HfIHF—>7'[M7 fO—'_>f0’
in X. This term must respect the multiplication and unit terms of I' and M:
mp; My = (Hyp O Hy);mag, tryHy = fostur
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Example 3.4.2.8. A 0-monoid homomorphism in X consists of a O-term fy: A — B
together with a 1-term
Ap T8 Ay

s L

B()WBQ

such that
Ay 4 Ay 4 A, Ay DA Ay 4 Ay
Ll | e ek el
Ay d » Ay = By —;— Bo —i— Bo
o T
By - » By By - » By
and

Ay —F—— Ay — By
AN
By —— Do By —5— Bo

Example 3.4.2.9. Suppose that M : A - B, N: B - C and O : D — FE are
1-monoids in X. Then a 1-monoid homomorphism A : M ©g N — O, f - g consists

of a 1-term
AO ]VIIO > BO ]\if0 > OQ
fol ﬂho lgo
Dg d‘O > E()
together with a 2-term
AO My
1\ﬁ>
0 0 0 Ny
RN
DO ’ No C
— J No— Co
0
\Xﬁi 90
00"

— B,
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such that

and
AO \MO AO \Mo
~
B fo B
tw/j\\ ’ ™~ \) ‘, ’ \NO\,\
Ay o m Co Dy Hho Co
l\ HM\ i _ \ l
fo Mo By () - Oo 90
/1% RN |
DO — Hh/ NO\__} CO DO to EO

Definition 3.4.2.10. An [-term in Mod" X is an l-monoid homomorphism.

Suppose that f: ' — A is an [-substitution in Mod X. Then, we define fo:Tog—
Ao by fo = Ojealfi)o- We define Hy : Hr — Ha, fo + fo so that, for each x € Ha,

Hy fdimz=10+1
(Hf):c: ! e
(fe)o ifdimaz #1

Composition of [-terms is defined by:

(f59)o = fo; 90, Heg =Hp Hy
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Given an [-monoid A in X, we define the identity /-monoid homomorphism by
(ida)o = ida,, Hiq, = idy, -

These data make Mod{" X(l) a category, and they are easily seen to respect the
globular structure of Mod X.

Suppose f: ' — M is an [-monoid homomorphism, and suppose that S C T'y(1).
Then, we define the term H; g : Hys : Hys — Hur, fo + fo by

r.
Hf,S = tg, Hf
When S is a singleton {z}, we simply write Hy .

Lemma 3.4.2.11. Suppose that f : T — M is an l-term in Mod" X, and that
S, T CTI'(l) are disjoint sets of l-variables. Then

(Hps OrHyr);my = Hysur

Proof. By the unit laws relating v and m, for each variable z € I", we have that

(id, &e,);m, ifzeS
(v,orid,);m, ifzeT
(

te © Tp)imr), = 4 i
((tg Orrz);mr) t,Orv,);m, ifdimz=1land z2¢ SUT

id, otherwise
id, ifzeS
id, ifzeT

v, ifdimz=landz¢ SUT

id, otherwise

=t
Hence, since H; preserves multiplication, we have that
(Hyps O Hyr)imy = (vg Orvg); (Hy O Hy)ymy
= (vg Oy vp);mp; Hy
= vgori Hy

=Hysur
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We now consider the n-types and -terms of Mod"} X when n > [. This is by far

the most complicated case.

Definition 3.4.2.12. An (n,l)-module M in X consists of an n-type My in X together
with the following data:

e When n = [ + 1, we require a choice of [-monoids s;M,t;M in X such that
(SZM)O = SlMO and (th)O = tho.

e When n > [ + 1, we require a choice of (n — 1,l)-modules sM,tM such that
(sM)o = sMy and (tM )y = tM.

e We require actions
Nyt Honr @ Mg — Mo, Pyt Mo @ Hone — M
of ;M and t;M on M such that when n = [+ 1, we have that
Nips Py + idsar = idua,

and when n > [+ 1, we have that

Nr # Aoar == Mars P+ Plar = Pl
These actions must respect the multiplication and unit of M:

(tar ©ridag); Xy = idag, (idas ®rear); phy = idag,

and 1 l l
(mar ©ridar); Aoy = (idae, O )3 Ay

(idM @lmM); pé\/[ = (pé\/[ OJ] idHth); le'

Furthermore, these actions must be compatible with each other:
(idse,, o O1Phr); Mor = Ny Oriday, ) Pl
Example 3.4.2.13. A (1,0)-module consists of a 1-type
Ay - B,

such that Ay and By underlie 0-monoids, together with 1-terms

HA M M HB
AO —> AO io > BO AO iO > B(] —> BO
ol T T e
AO MO 7 BO AO M() 7 BO
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The laws for the action A}, say that
Ay —— Ay M B,
| lop ]
AO HIA > AO A/ilo > Bo
T
AO MO > B()
and
Ay A A, Ay A, My B AL A, A, N
H o | H H \ H A
M,
A A y Ay —+— A A > )
| 2 H H 2
A M > e >
The laws for the action p%/f say that
Ay M By, =—— B,
H H | o] w4t
ENES NN
H ﬂpé\/f H AO —0—) B(] AO —0—) BO
AO ]\i40 > BO
and
A() ]\540 > Bo HIB > B() "o > BO AO ]\540 > Bo 7-[iB > B() "o >
|| w o ]
AO ]\540 > B() HIB > BO = AO ]\/ilo > B() HIB)
| | R .
AO ]\140 > BO AO ]\140 >
The compatibility law for A9, and p}, says that
A() HIA > Ao ]\140 > Bg HIB > B() Ao HIA > AO A/ilo > B() HIB
[ " R R R
Ay 4 A, Mo y By = A Mo y By —2
| | 2
Ao ]\/ifo > BO AO ]\/ilo >
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Example 3.4.2.14. A (2,0)-module in X consists of a 2-type in X

My
AR

Ay 0o By

o

such that My and Ny underlie (1, 0)-modules, together with 2-terms
T [N,
Hp
// | \)\F\\} A // ;\%\f\/‘ B
0 —— 040 0
Oo

The laws for the action A}, say that

Ao

>A\/‘// ﬁ Fo o |
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A

T | e

Ao \/\ AO _\// ||| M.~ Oo By

Example 3.4.2.15. A (2,1)-module in X consists of a 2-type
Mo

A ﬁoo By

v

95



such that M, and Ny underlie 1-monoids, together with 2-terms

%;/))

N
M by
5

B

[e=]

0

and

Ao

HM
HM

0
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The laws for the action p}, are similar. The compatibility law of A}, and p{, says that

Example 3.4.2.16. Every [-monoid induces a canonical (I + 1,)-module over itself:
given an [-monoid A, the (I + 1)-type H4 can be made into an (I 4+ 1,[/)-module by

defining Ay, = pp,, = ma.
Definition 3.4.2.17. An n-type of Mod" X is an (n,)-module in X.

Suppose that I' is an n-context in Mod ¥ X. Then, the action terms of the modules
in I assemble into action substitutions on I'. Suppose that = : A is an [-variable in
[. When z ¢ T, we define the m-shaped n-substitution AL so that, for each y : M
in 'y,
()\F)y _ {AM if dimy > [ and =z = sy
v idy; otherwise

By Remark 3.1.2.1, we have that )\5 :To @, Ha — Ty, Similarly, when = ¢ s,I", we
define the substitution pl : Ty @, Ha so that, for each y : M in Iy,

(o) _{pM if dimy > [ and x =ty
/Y

idy; otherwise

More generally, suppose that S = {z1,...,2,} C I'(l) is a set of [-variables. Let
I @, H =T¢ Dy Hay Buy -+ By, Ha,. Then, when S NI(1) = (0, we define
ATy g H — T so that, for each y: M €T,

(D), = Ay ifdimy > and siy € S
s idys otherwise

When S N sT(1) = 0, we define p§ : Ty g H — I so that, for each y: M €T,

(o), = py  ifdimy > and t;y € S
Sy idys otherwise
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Example 3.4.2.18. Suppose that I' is the following 1-context in Mod# X:

AMyp Y0 _93D

Let x : B be the unique variable with type B in I'. Then AL is the substitution:

A-M,p M. N,c_9,D
IR
A M>B & s C 6>D

On the other hand, p! is the following substitution

M H
A~ B 28
| .

M

4

A |

~

B-4¥s0c—-%D
||

BNCb

\ ! \
7 T 7
\ ! \
7 T 7

-

Example 3.4.2.19. Suppose that I' is the following 2-context in Mod# X:

Suppose that z is the unique O-variable with type C in I'. Then AL is undefined, and

pL is the following substitution:

A
\M\Bé[
N

%

Q
IS
Q

Q

Suppose that T and M are an n-context and an n-type in Mod!® X respectively.
An (n,l)-module prehomomorphism f : 1T — M in X is a term fo['g — M together
with term-wise parallel [-monoid homomorphisms s;f and ¢, f such that (s;f)o = si.fo

and (t,f)o = tifo. Given a prehomomorphism f : ' — M and an [-variable z € I'((),
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there are always two canonical ways to form an n-term 'y ®, Ha — M; in X; we will
denote these terms by JI(f) and J; (fo). We define these J-terms by case analysis

depending on whether x is in the [-source or [-target of I':

Avi if v & 1,7

gy =4 o e
(fo®i Huyra);pm ifx et
5 ifx & s
(Hsife ©1 fo); A if z € 5T

When n =1+ 1, we have that
(NI f—+f
and when n > [ + 1, we have that
o) 30 (f) = 30w, ()3 (sf) = 3 ().

Remark 3.4.2.20. Slightly weaker conditions suffice for the construction of J}(f)
and J, (f). For example, if = € ;,I", then we need only require that ¢, f; underlies a
term t;f in Mod" X and that My underlies a term M in Mod " X.

Example 3.4.2.21. Suppose that I' is the 2-context in Mod{” X defined in Exam-
ple 3.4.2.19. Suppose that x : C' is the unique O-variable in I' with type C'. Suppose
that f: ' — S is a (2,0)-module prehomomorphism. Then,
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and

Remark 3.4.2.22. By construction, we always have that
i Ja (f) = f = 3, ().

We will soon see that J and J, agree in Mod# X. Furthermore, in this case, the

map J; = J, is exactly the inverse to composition with t,. See Proposition 3.4.2.38.

More generally, suppose that f : I' — M is an (n,[)-module prehomomorphism,

and let S = {z1,...,2,} be a set of l-variables in I'. Then, we define
Js(f) =32, 32,06, Is(f) =3z -3, ().

The right-hand expressions always make sense because the weak conditions mentioned
in Remark 3.4.2.20 are always satisfied. The following proposition tells us that the

order of the z; makes no difference, and so J&(f) and Jg(f) are well-defined.

Lemma 3.4.2.23. Suppose that f : T' — M s an (n,l)-module prehomomorphism.
Letx: A and y : B be distinct l-variables in I'. Then,

Proof. We will prove the statement for J*. The statement for J~ follows by a sym-

metrical argument. First suppose that = ¢ ,I", and y ¢ ¢;,[". Then, since x # y, we

ToyH
have that pﬁy s pg = pg@ﬂ“; pL, and so

ILT() = L7805 f = o5 o0 f = 3535 (N).
Now suppose that = ¢ ¢;,I', and y € t;,I". Then,
I35 () = o775 (f O Hug)i one = Ty (0 ) = 3535 ()
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A similar argument holds when = € ;,I", and y ¢ ¢;,[". Finally, suppose that « ¢ ,I"
and y ¢ t;I". Then, we have that

3;3;“) = 3;((f ©) %tlf,y)Q 2%
= ((f ©1 Hugy); pr) Ot Hepa); pr
= (f O Heypy Ot Hispa); (Par ©1idear)s pur
= (f ©1 He, 1.0 Ot Heyg.2); (o ©1idear); pur

since pys respects my, 57, we have that

3:3;”) = (f 1 Hey .y O Hiyrw); (o ©ridear); pur
= (f Ot Heypy O1 Heypa); (diar O ); pur
= f O (Hipy ©1 Heo); ™o ); pur
= (f O Hofeay); Pur

The last equality follows from Lemma 3.4.2.11. By a symmetrical argument, we have
that

3;3I(f) = (f 1 Hep{aew}); PM-

Hence, we have that 313 (f) = 3735 (f) as required. O

Proposition 3.4.2.24. Suppose that f : I' — M is an (n,l)-module prehomomor-
phism. The following properties immediately follow from the definition of J& and Jg
and the proof of the preceding lemma:

e For any l-variable x € I'(l), we have that

o When S C (s,I')(1), we have that

3o (f) = (Hugs O fo)i Ant-
o When S C (t,I')(1), we have that

J5(f) = (fo 1 Huys)i pu-

o When S, T CT'(l) are disjoint, we have that



o By the unit laws we have that
ts; 3T (f) = f =55 (f).

Definition 3.4.2.25. An (n,l)-module homomorphism f :T' — M in X is an (n,[)-

module prehomomorphism satisfying the equivariance law,

for each [-variable x € T". It follows immediately from this definition that:

e The source and target of an (I + 1,[)-module homomorphism are I-monoid ho-

momorphisms.

e When n > [ + 1, the source and target of an (n,!)-module homomorphism are

(n — 1,1)-module homomorphisms.

Remark 3.4.2.26. Suppose that f : I' — M is an (n,l)-module homomorphism.
Suppose that S C I'(1) is a set of [-variables. Then, it follows immediately that

Js(f) =3s(f)-

Definition 3.4.2.27. When n < [, an n-term in Mod" X is an (n, I)-module homo-

morphism in X.

Suppose that f: ' — A is an n-substitution in Mod"? X. Let z : A be an [-variable
in I'. Then the the actions of A on the types in I' allow us to construct a number of
different substitutions I' &, Ha — A. For example, suppose that f is the following

1-substitution:
—_—r

N

4 \
T 7

e<— o

Suppose that x is the O-variable with type A whose type is labeled in this diagram.
Then the terms J}(f1), 3, (f2), I (f2) and J, (f3) all induce a distinct substitution
I'®, Ha — A. In general, for each y € A such that z € I'y(l), we have J-terms
JE(f,) and J; (fy). The following result will enable us to describe the substitutions

that can be built from these J-terms systematically.
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Definition 3.4.2.28. Let f : ' - A be a w-shaped n-substitution in a globular
multicategory X. Let x be an [-variable in I'. Let 7|, be the sub-globular set of
such that for each k-variable y € 7w(k), if £ > [, then

Y € 7T|f{x}(k‘) <~ T E Fy(l),

and if k < [, then y € 7|y (k) if and only if there exists some I-variable z € 7| (1)

such that spz =y or {2z = y.
Lemma 3.4.2.29. The globular set 7|s(zy is an (I — 1)-trivial pasting diagram.

Proof. First suppose that 7 is (I — 1)-trivial, and that
T=m1 O Oy,

where each 7; is [-trivial, and m > 0. Suppose that m = 0. Then, 7 = D!. Since
z € I'(l), it follows that 7|3 = D’ This is certainly an (I — 1)-trivial pasting
diagram. Hence, suppose that m > 0. Then each m; corresponds to a m;-shaped
substitution f; : I'; = A, such that

f=hH0Ou O fm,

Thus, we have that

We claim that S = {1 < i <m |z € I;(])}is a sequence {j,j +1,---,5 + k} for
some j and k. Hence, suppose that z € I';. Let p; be the shape of I';. First, suppose
that p; = D'. Then x € 5I'; and = € t;I';. It follows that if i > 0, then = € ;,I;_1,
and if i < [, then x € 5I';.;. Now suppose that m; # D!, If x € 5y, then x € ;[;_;
when ¢ > 0. Furthermore, in this case x ¢ I'; for any j > 4. Similarly, if z € I,
then x € §,I';11 when ¢ < [. Furthermore, in this case z ¢ I';, for any j < 4. Finally,
suppose that = ¢ sI'; and « ¢ ;,I';. Then, x ¢ I, for any j # i. Combining these
observations, we find that S must be a sequence {j,7 4+ 1,...,j + k}. Consequently,
we have that
T ey = 5 O i1 Or - Wi

This is an (I — 1)-trivial pasting diagram.

We now prove the claim for (I — k — 1)-trivial pasting diagrams by induction on
0 < k < I. We have just proved the base case, when k£ = 0. Hence, suppose that
k > 0, and that

T="1 Ok Ok T,
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where each m; is (I — k)-trivial. Then, there must be a unique ¢ such that =z € T;.
Consequently, we have that
lrty = Tl pay-

However, this is an (I — 1)-trivial pasting diagram by the inductive hypothesis. This
completes the induction. Since every pasting diagram is (—1)-trivial, we have proved
the claim. O

Now suppose that f: T' — A is a m-shaped n-substitution in Mod" X, and that
x : Ais an [-variable in I'. Suppose that Alr,y is the context of A induced by 7| f(z}.

By the lemma above, we have that
Al = A1 01 Ay Op -+ - O Ay

for some [-trivial A; and some m > 0. For each 1 < i < m, we define substitutions
J5i(f), J5.(f) : To @z Ha — A so that, for each y € A,

JE(fy) ifdimy > and tj)y = A,

(3L(f))y = {

Iy otherwise
£, if dimy < 1

(:()y = {35 (fy) ifdimy >1and s;y = s
Iy otherwise

Note that t,y = t;A; if and only if y € A; if and only if sy = s, A;. Hence, since

each term in f satisfies the equivariance laws, we obtain:

Lemma 3.4.2.30. For each i, we have that

Example 3.4.2.31. Suppose again that f: ' — A is the following 1-substitution:

ANy

Suppose that = : A is the O-variable in I' whose type A is labelled in this diagram.
Then,

Jo1 =32 (1) ©o f2 @ f3, T =31 (1) @0 f2 @ f,
Jro = 1 @035 (f2) @o f3, Joz = f1 ©0 35 (f2) @0 fs,
Jis =11 ®0 fa @0 T5 (fs), oz =11 ®0 fa ©o J; (f3)-
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Suppose that f : ' - A and g : A — M are a composable pair Mod X. We
define the module prehomomorphism f; g by

(f;9)0 = fo; 90

Our goal now is to show that f;g¢ is a module homomorphism; that is, f; g satisfies

the required equivariance laws. Suppose that x is an [-variable in I", and write
Alfay = A1 O O Ay

where each A, is [-trivial. We will prove that f; ¢ satisfies the required equivariance

laws by induction on m.
Proposition 3.4.2.32. When m = 0, we have that JF(f;9) =3, (f;9).

Proof. First, suppose that m = 0. Then f = [f’] for some [-term f’. Consequently,
x € ', and z € ;I', and A = 5;A = t;A. Hence, by Proposition 3.4.2.24, we have

that N )
IH(fr9) = (15 90) Ot Hay(pig)0); PM

= ((f5590) ©1 (K123 Hurg); P
= Hyr 25 (9o ©1 Huyg); pur

- Hf/,xS:JZA(Z)(g)

=Hp i 3a0(9)

=Hyr 23 (Mg @1 90); A

= ((Hyr25 Harg) O1 (f5: 90)); Aur
= (Ha(rig).2 Ot ((f5590)); Aar

=3, (f:9)

Now suppose that m > 0. Our approach will be as follows:
e Firstly, we will show that
T (f9) = 35.(F); 90,

and that
32 (f19) = J2.1(f); 90

See Lemma 3.4.2.33.

105



e Secondly, we will show that

See Corollary 3.4.2.36.

Lemma 3.4.2.33. We have that
T (f39) =35 () 90,

and
32 (f19) = J21(f); 90

Proof. For any 1 < i < m, we have that t;,A; € t;A implies ¢ = m. The converse
holds if and only if x € #;,I". Hence,

~t _
Jx’m(f) B {)\5; fo if v ¢ ¢,T

By a similar argument,

Joa(f) = (Moo Suar Haga, o) )‘ﬁl(l) if x € g
: Pg; fo ite ¢ sl

It follows immediately that when z ¢ ¢,I", we have that
T (f39) = 30 (); 90,
and when z ¢ s,I", we have that
3. (f39) = 3..1(1); 90-
On the other hand, when z € ;I", we have that

Trm(Figo = (fo Dun, Hega, 2)i Poa,,i 9o
= (fO D, thfAmﬂC);J;Am (g)

Similarly, when x ¢ s,I", we have that

3;,1<f)7 go = (fO 69SlAl HslfAl,x); )\SAZAI? go
= (fO SEPYNY HslfAlny);:{stAl (g)

The result now follows from Lemma 3.4.2.34 below. O]
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Lemma 3.4.2.34. Suppose that f : T — A and g : A — M are terms in Mod!¥ X.
Suppose that x is an l-variable x € {;I', such that A|, = Ay ©; - -+ O A, where each

A; is i-trivial, and where m > 0. Then, we have that

32 (fi9) = (fo®ua, Husa, )i Jya,, (9)

Similarly, for any l-variable x € s;I', we have that

32 (f59) = (fo ®an, Hapa,a); Taa, (9)-

Proof. Will will prove that the above description of J; (f;g) is correct. The descrip-
tion of J, (f; g) follows by a symmetrical argument. Suppose that x € t;,I". Then

I (f59) (fo;: 90) @1 Hiy(fi9).2); PV
Jo ©1 Hege); (90 ©1t Hayg)s P
fo @1 He.0); I3 A (9)
Jo @1 My .0); 34, (9)

Let z = t;A,,. Then, for each variable y € A, we have that

=
=
=
=

(fy)o & (tgry;’Htlfy) ifttye A and z € I,
(fo ©1 Hepa)y = § (fy)o O (vor,; Hey,) iftiy € tiAand o ¢ T,

(fy)o if dimy <1 orty & tA
( (fy)O ©y Htlfy,x if tiy € t A\ and = € Fy
=9 (fy)o & (tlfy;ttlAy) if iy e tAand = ¢ T,
L (fy)o if dimy <l or t;y € ;A
( (fy)o @1 Hy, o if tjy = =
=4 (fy)o; (idy Orrya, ) if Gy € (LA) (1) \ {2}
L (fy)o if dimy <1 or tiy € A

Hence for each y € A we define

(f)oOiHy, o iftiy==2

fo=19 (fy)o if iy € (LA)(1) \ {2}
(fy)o if dimy <1 or tyy ¢ t;A

and
idy ®y idHtly if tly =z
ry = 4 id, Oy, if iy € (L A)(1)\ {z}
id, if dimy <l or tyy ¢ ;A
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Then, by the analogue of Remark 3.1.2.1 for terms, we have that

(fo @1 Hiyfe) = @f;ﬁ Ty

yeEA
/.
- @ Iy @ Ty
yeEA yeEA

AOHy A
= (fo ®: Hy.2); t(tlA)(lt)l\z

However, by Proposition 3.4.2.24, we have that

and so . .
32 (f19) = (fo @1 Hupa); Ia0y(9)
_ CAOHy A A ~—
= (fo®: Hy.n); Yea)(0)\2 7J(tlA)(l)\z(\5z (9))
= (fO . %fz,m>;3,z_(g>
= (fo ®uan Hifay,a)iIya, (9)
as required. O]

Lemma 3.4.2.35. Suppose that g : A — M is a term in Mod"? X. Then, for all
1 <1 <1, we have that

~

i1 ()90 = 35:(F); 90.

Proof. First, note that since s;A; 11 = t;4A;, we have that x € sI';;1 N1, Let
z = 51241 = t;A;. Then, for each variable y : A € A, it follows that

(Hszfy,x O (fy)0)§ )‘Ay(l) if s;y =2

(Fai1(f))y = {(fy)(] if siy # 2

@), = {<<fy>o o1 Hayg, o) pay ity = 2

(fy)O if tly 7é z
Let
f/ — Hslfy,:v @l (fy)(] lf Sly = Z
Y (fy)[) lf S1Y 75 z
JHpL O fy ifsy==z
fy lf Sly 7£ y4
and

— An, ) sy =z
Y id 4 if s;y # =
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Then, summing over y € A, and applying Remark 3.1.2.1, we find that

3;,i+1<f) = @(3;,i+1(f))y

yeA

= @f{/;my

yEA

=Om0Om

yeEA yeEA

= (fo®: Hyo)i X
By a similar argument, we have that
J5() = (fo ®: My a)i P2

It follows that

= J(f); 90

as required. O

Corollary 3.4.2.36. We have that

Proof. Repeatedly apply Lemma 3.4.2.35 and Lemma 3.4.2.30. O
We can now finally conclude that n-terms in Mod{"} X can be composed.

Proposition 3.4.2.37. A composite of (n,l)-module homomorphisms is an (n,l)-

module homomorphism.

In other words, we have proved that Modt X is a globular multicategory. We now
describe the homomorphism types of [-types in Mod!”¥ X. Given an [-type M in
Mod™ X, the homomorphism type of M in Mod” X is defined to be the (I 4 1,1)-
module H ;. The reflexivity term at M is ty;. The unit and associativity laws ensure
that 5 is an (I + 1)-term in Mod!¥ (X). We define J, by

Composition with v, is a bijection with inverse J, by the following proposition:
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Proposition 3.4.2.38. Suppose that I' is a context in Modt? X, and that x : A is
an l-variable in I'. Suppose that f : T'— M and g : I’ &, Ha — M are (n,l)-module
homomorphisms in Mod"} X. Then, we have that

S =1
gag) =9,

f'#

x?
~+
Jg (T

Proof. From the definition of J}(f), we have that

and so it suffices to prove the second identity. Suppose that (I' ®, Ha)lgy = ['1 O

-y, for some I-trivial I';, and m > 0. Since H 4 is an (I+1)-type in (T'®,Ha)|g{a}
we have that m > 0. Recall that we denote the added variable in ', H 4 by H. : Ha,
the source of H, by zy : A, and the target of H, by x; : A. Since H, : H, is the
unique variable in I' ®, H4 with t;H, = x1, and Ay, = m4, we have that

Ja(9) = N0 g = my g,

He

Similarly, since ‘H,, is the unique variable in I'®, H4 with s;H, = xo, and py, = ma,

we have that
I (g) = phPHas g = my M g = 37 (g).

First suppose that x € {;,I'. Then ¢,I', = ;. Thus,
tl(tg)rm = (tg)tzfm = (tg):m =ida.

Hence, Lemma 3.4.2.33 tells us that 3} (v1; ) = (v} @., Hia,); J;,(9). Furthermore,

it is easily verified that (v} @, idy,) = ¢, P="4. Hence,

Now suppose that x ¢ ¢;,I". Suppose that y : B € I, and that t;y = x. Then,

pe; (idp ©ita) = (pp @rida); (idp Oea)
=pp Oty
= ((idp @ Ha); pB) ©1 (va; Ha)
= (idp ©Ha @1 va); (pB O1 Ha)
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However, we have that

pp ifty==x
-0

yBeT idg otherwise

id if tiy =
tgz @ {1 BOIta ULy=x
ldB

yBer otherwise

Furthermore, the following identities are easily verified:

LOaHa @ {?dB Oridy, Oiea ifty =z

T .
BT idpg otherwise

T&eHa _ @ pp O Hy ifty=2
P B idpg

yBeT otherwise

Hence,
3. (hsg9) =phithig

- tzl ) pxo ) g

=1, 3, (9)
=1, "4 35, (9)
=y

as required.

]

Hence, Mod!? X is a globular multicategory with strict homomorphism types. This

assignment extends straightforwardly to the arrows and 2-cells of GlobMult, and in

this way we obtain a strict 2-functor:

Mod™ : GlobMult — GlobMult!} .

Theorem 3.4.2.39. For each | > 0, the functor Modt" s strictly right adjoint to
the functor Ui[l} : GlobMuItg} — GlobMult that forgets strict homomorphism types

at level [.
vl

GlobMult!) 1 GlobMult
\/

Mod 1}
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Proof. Suppose that X is a globular multicategory with strict homomorphism types.
Suppose that M is an n-type in X, and f : I' — M is an n-term in X. We define
the unit 7y : X — Mod{ UE}X, for each n-type nx (M), and each n-term nx(f) in
Mod{# Ung}X so that nx(M)o = M, and nx(f)o = f. The remaining structure is
defined by induction on n. When n < [, we define nx(M) to be the identity map on
types and terms.

Now suppose that n = [, and suppose that M is an [-type in X. Suppose that
m : M is the unique [-variable in [M].We define

Hopeany = Har,
M (m) = Jm (idar).
and
How(r) = Iray (f5ear)-
Now suppose that n > [ and that M is an n-type in X. Suppose that m : M is
the unique m-variable in [M]. Then we define

)\UX(M) - 3Slm<1dM0>

Prz(ar) = Jym(idag,)

The laws for homomorphism types at level [, imply that this data satisfy the
required properties, and that nx is a natural homomorphism that preserves homo-
morphism types at level [.

Suppose that Y is a globular multicategory. Suppose that N is an n-type, and
that ¢ : A — N is an n-term in Ug} Mod{® Y. The counit ey is defined so that
ey(N) = Ny and ey(g) = go-

The first identity triangle identity says that, whenever X has homomorphism types

at level [, the composite assignment

U{l}X U{l} Mod it U{Z}X U{I}X

Mv+——— (M, Hypyy...) — M

is the identity assignment. The second triangle identity says that, for each globular
multicategory Y, the composite assignment

Mod {1}

Mod !ty —2es% o £foqth i Moty Mod " ¥

(M,HM,) — ((M,HM,),(HM,),) — (M,HM,)

is the identity assignment. O]
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Example 3.4.2.40. These results also hold for n-globular multicategories, for finite

n. Restricting to the case where dim X = 1 and [ = 0, we recover Theorem 3.4.0.3.

Proposition 3.4.2.41. Suppose that ' < 1. Then Modt? preserves representability
at level I'.  Furthermore, if a globular multicategory X is representable up to level
(1+1), then Mod'® X is representable up to level I.

Proof. First suppose that X is representable at level ', for some I’ < [. Suppose
that I' is an I'-context in Mod!¥ X. Suppose that f : I' — M is an n-term in X.
First suppose that n = [. Then, we can define Hy = f;t), and so f can be seen as
an n-term in Mod” X. On the other hand, when n > [, the equivariance laws are
vacuously satisfied since I" does not contain any [-types. Hence, in this case also, f
is an n-term in Mod{" X. Tt follows from this analysis that if X is representable at
level I/, then Mod{" X is representable at level [

Now suppose that X is representable up to level (I 4+ 1). Let I" be an [-context in
Mod! X. Then, we define QT by

(®F)0:®F07 Her =®HF,
and

m®p:®mp, t®p:®tp.

We define the compositor mp : I' = @ I' by
(mF)O = mFOJ Hl’l’lr = m?‘[r‘
We have that
(mr)o;t@)r = Imp, ®tr
= T, mHF

= tF;Hm[‘7
and
(mr)o;m@)r = mro;®mr
= mp; My

= mr; Hmp‘

Hence, mr is an [-term in Mod¥ X. Tt is a compositor of I' by construction. O

Proposition 3.4.2.42. Suppose that I < . Then the functor Mod : GlobMult —

GlobMult preserves coproducts at level I'.
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Proof. Suppose that X has coproducts at level I'. Let {A;:sA —+ tA},_; be a set
of parallel [-types in Mod{" X. Since I’ < I, we can define [Lic; Ar : sA + tA by
(LLics Ar)o = ;e (Ai)o. Furthermore, each inclusion ¢; : (A;)o — [[;c;(As)o defines
an I'-term in Mod"} X. Suppose that ' is a m-shaped n-context in Mod{"} X such
that, for some [-variable x in I, we have that I', = [[,.; A;. Suppose that  is not
the source or target of any other variable in I'. Suppose that B is an n-type, and
that g : sI' — sB, h : tI' — tB are term-wise parallel (n — 1)-terms. Suppose that

for each ¢ € I, we have an n-term
fi : T[Ai)x] — B,  sn_1i ;9 =+ tu_15; h.

We will define a term f; : ' — B in Mod” X such that (f;)o is the term in X

corresponding to the family {(f;)o},c;- When n < [, it is clear that the term f; exists

il
and satisfies the required universal properties.

Now suppose that n = [. Since I’ < [, we have that
(Hr)[Ai/x] = Hria,/a

Hence, we define Hy, : Hr — Hp, fr —+ f1 to be the term in X corresponding to the
family {#Hy, },., It follows that, for each i € I, and for each variable y : C' € Hr,

mp if dimy =1
(Mrpa, /a2 LZ{F)y =qidg ifdimy # [l and y # x
Li ifdimy #landy==x
= (%‘HFQmF)y
Hence, for each ¢ € I,
JUmp Hy, = mppaya 0t Hy,
= mria,/a; iy,

= LHF;Hf;mB.

Thus, mp;Hy, = Hy,;mp. Similarly, we have that tF[Ai/x];L;HF = «I;vp, and this
implies that tr; Hy, = fr;tp. The required universal property is now easily verified.
Now suppose that n > [. Since I’ < [, for each [-variable y € I', and each i € I,
we have that
SIS =350 ) =3, f) =53, (fr)
Hence 3;(f1) = Cj;(fl), and so f7 is a term in Mod"¥ X. The required universal
property follows immediately. O]
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3.4.3 Composing Level-wise Modules

We now show how we can compose modules construction at each level, in order to
obtain right adjoints to Uy, : GlobMuIt;,S_[ — GlobMult, for more general sets S C w.

Proposition 3.4.3.1. Suppose that | < j. Then Mod " preserves homomorphism
types at level j.

Proof. Suppose that X is a globular multicategory with homomorphism types at level
j. Let M be a j-type. Suppose that m : M is the unique n-variable in [My]. First
suppose that n = j. Then we define the (j + 1)-type H,s in Modt X by:

(HM)O = HMoa /\é'-[M :3m(>‘lM;tMo)’ pé‘-[M :3m(péw;tMo)v
and we define t,; by

(tM)O = tMOJ

For any j-term f,we define
(Hy)o = Hy,-

For any n > j, and n-term g, we define

The required identities can be verified by plugging in reflexivity terms at levels [ and

7, and applying J. For example, we have that

tars (idar Ortyar); )\lHM = (ta Oridyar); (idag ®ltth);3m(>\l]\J; thr)
= (tamr O tth);me()\lM; tr)

dar Oreen); (tar O idHM);:Jm()\éw; tar)

: YA
1dM @ltth); AM; Ty

(i

(

19,7}
= tar;idy,,,

and so (idy Oty ): )\%M = idy,, O

Corollary 3.4.3.2. Suppose that S C w is a finite set. Then, we have an adjunction

S
U’H

/—\
GlobMulty, 1  GlobMult

~_

Mod®
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we define Mod® to be the following composite:

GlobMult = G, Med™) g, Modmstl Mod) o' GlobMults)
O

Remark 3.4.3.3. It follows that a type (or term) in Mod! X has the data of a type
(or term) in Mod!? for all or all 0 < i < I.

In particular, when d = n is finite, and S = [n|, we obtain:

Corollary 3.4.3.4. We have an adjunction

Uy

/\

n - GlobMulty 1 n - GlobMult

~_

Mod,,

Proposition 3.4.3.5. Let S C [n] be a finite collection of levels. Then the forgetful

functor
U, : GlobMult;, — GlobMult

18 monadic and comonadic.

Proof. Since Uy, forgets essentially algebraic data, it is clearly conservative. The claim
now follows from the (Cat-enriched) (co)monadicity theorem since Uj, has a left and

a right adjoint and since GlobMultf[ and GlobMult are locally presentable. ]
The following proposition allows us to prove the case when S is infinite.

Proposition 3.4.3.6. Suppose that | is finite. Then we have an adjunction:

vl
/\
GlobMult!] | GlobMult}, ™

\/

Mod{#}
Proof. We have the following commutative triangle:

{1}
GlobMult!! "5 GlobMultl: !

(0 [1-1]
UH U’H

GlobMult
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By Proposition 3.4.3.5, the functor U7[_l[_1] is comonadic, and by Corollary 3.4.3.2, the
functor Uy[] has a right adjoint. Furthermore, GlobMultg_} is locally finitely presentable
since it is the category of models of an essentially algebraic theory. Hence, the (Cat-
enriched) adjoint triangle theorem (see [18,33]) applies, and so Uy{{l} has a right adjoint
as required.

Explicitly given a globular multicategory X with homomorphism types at level
j for j < 1 —1, the right adjoint Mod™® : GlobMult!"% — GlobMult" is defined
so that Mod!” X is the subobject of Mod! UJ_Z[]X whose homomorphism type data at
level j agrees with that of X for each j <1 —1. O]

Corollary 3.4.3.7. Suppose that S C w is an infinite set. Then we have an adjunc-
tion

S
UH

/—\
GlobMulty; 1 GlobMult

~_

Mod?®

Proof. Suppose that S = {lp < ... <l; <...}. Let S; = {lo,...,l;}. First note that
GlobMulti is the strict 2-limit of the following chain of forgetful functors,

S1 So
% GlobMulty,® —* GlobMulty,® —* GlobMult.

and that Uj is the coprojection from this limit to GlobMult. By Proposition 3.4.3.6,
each of these forgetful functors is cocontinuous. It now follows that Uy is cocontinu-
ous since a cone in GlobMulty amounts to a sequence of cones in (GlobMulth)ieN.
Since GlobMulti and GlobMult are locally presentable, the adjoint functor theorem
implies that Uj, has a right adjoint Mod?. O

In particular, when S = w, we obtain:

Theorem 3.4.3.8. The forgetful functor Uy : GlobMulty — GlobMult has a right

adjoint.
Uy

/_\
GlobMulty; 1| GlobMult

\/

Mod

In order to describe the modules construction more explicitly, let L* : GlobMult —
GlobMult be the monad UJLY, and let Mi : GlobMult — GlobMult be the
comonad Ug[} Modll. Let U+ be the unit of the adjunction Uiﬁl} - L%H}. We
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have that Lit! = Uz]U;{jH}LgH} Lgﬂ. Hence, we define a natural transformation
n': L' = L' by
X

L X L

Let y{*1} be the counit of the adjunction Mod!*+!} + U;EZH}. Similarly, we have
that Mt = qul UizH} Mod{* 1 Mod!?. Hence, we define a natural transformation
€ Mt = M® by

Mi—l-l U’L’i]y{i+l}L[i]
It follows that 1’ is a morphism of monads, and € is a morphism of comonads.

Consider the following diagram of monads:

-1 0 1

) P Ny 5 Y 5 R AN

An algebra ¢ of the algebraic limit, L“, of this diagram consists of a globular mul-
ticategory with an L’-algebra structure, ¢;, for each i respecting n’. However, an
algebra of L is a globular multicategory with homomorphism types at level [ for each
[ <. Furthermore, the requirement that n’ o ¢t = ¢’ says that, for each [ < i, the
homomorphism types at level [ chosen by ¢**! agree with those chosen by i. Hence,
an algebra for L¥ is simply a globular multicategory with homomorphism types, and
the forgetful functor of L“ is Uy : GlobMulty, — GlobMult. However, for any glob-
ular multicategory X, the free algebra L“X is just the colimit colim; L'X. Hence, by

adjointness, we have a natural isomorphism
GlobMult(X, Uy ModY) = GlobMult(L“X,Y)
= GlobMult(coliim L'X,Y)
= GlobMult(X, lim MY)
= GlobMult(X, M“Y)

where M“Y = colim MY is the colimit of the following diagram:

MY < MOY e MUY

Since this isomorphism is natural in X and Y, we have that M*“ = Uy Mod.

We refer to an n-type in Mod X as an n-module, and an n-term in Mod X as a
homomorphism of n-modules. It follows from the description of Mod X as a limit,
that an n-module (or homomorphism) has the data of a type (or term) in Mod! for
all or all 0 <1 < [; that is:
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e Given parallel (n — 1)-modules sM,tM, an n-module M : sM -+ tM in X
consists of:
— An n-type My : (sM)o - (tM)g
— For each j < n, we require n-homomorphisms
Ny« Heont @5 M — M, N = N
Pgw t MO Hyn — M, PiM — piM
satisfying laws making them compatible with the multiplication of M and
compatible with each other.
— an (n+ 1)-module Hy : M -+ M
— an (n + 1)-homomorphism ty; : M — Hyy, tsyr = Ty
— an (n + 1)-homomorphism my; : M @, M -+ M satisfying associativity

and unit laws

Here we take M, = p/,, = iday and X, = pl,; = id;ys when j = n — 1 and we

make similar definitions for v and m.

e Given an n-context of modules I', an n-module M and parallel (n—1)-homomorphisms
sf:sl' = sM and tf : tI' — tM, an n-homomorphism f : ' - M, sf -+ tf

consists of:

— An n-term fo: ' = M, (sf)o —+ (tf)o satisfying equivariance laws for all
j<n
— An (n + 1)-homomorphism H; : I' = M, f -+ f which respects the unit

and multiplication homomorphisms of I' and M

Our decomposition of this construction into level-wise parts shows that this definition

is not circular.

Remark 3.4.3.9. Suppose that [ > 0. Suppose that S is a set of levels such that
Min S > I. Then Proposition 3.4.2.41 implies that Mod® preserves representability
at level [. Furthermore, if a globular multicategory X is representable up to level
(Min S 4 1), then Mod® X is representable up to level Min S + 1.
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3.5 Enrichment

3.5.1 Level-wise Enrichment

We can describe a notion of level-wise enrichment by combining the level-wise modules
construction with the level-wise families construction. Recall that for any globular

multicategory X, we define the families construction at level [ as follows:
e When n < [, an n-type in Fam' X is an n-type in X.
e An [-type in Fam{"} X is a set of I-types {M (1) | « € I} in X.

e When n > [, an n-type M consists of an n-type M(¢,:') for each ¢ € I, ) and
' € I,y such that when n = [ + 1, we have that M(¢,() : s, M(¢) - t,M (/)
and when n > [ + 1, we have that M(¢,0/) : sM(¢,0/) - tM (e, ).

e Similarly, when n < [, an n-term in Fam{" X is an n-term in X and when n > [,
an n-term in Fam{" X is a family of n-terms of X indexed by a set which depends

only on n-dimensional data.

Definition 3.5.1.1. Let GlobMultgj T be the category of globular multicategories
with homomorphism types at level j for each 7 > [. Similarly, let GlobMult%l] be
the category of globular multicategories with homomorphism types at level j for each
7 > 1. Then for each [. we will define a functor E; : GlobMult®! — GlobMultZ!

which enriches at level [. As in the 1-dimensional case, we define:
E; = Mod" oFam!"}
Unwrapping this definition, we find that an n-type X of E,V consists of:
o A set Xy of n-types in X
e For each pair of objects A, B € Xy, an (n+ 1)-type [A,B]: A -+ BinV

e Composition and unit terms, [A, B] ® [B,C] — [A, C] and [A] — [A, A], satis-

fying associativity and unit laws
Remark 3.5.1.2. Suppose that i < n. Then we have that tr,E;X = E;tr,X.

Remark 3.5.1.3. Whenever [’ < [, the enrichment functor E; preserves representabil-

ity at level . This follows from Proposition 2.9.2.7 and Proposition 3.4.2.41.
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Example 3.5.1.4. When X is a virtual double category, a O-type in EyX is a category
enriched in X, as described by Leinster [31]. Similarly, a O-term in E¢X is a functor

between such categories, as described ibid.

Example 3.5.1.5. Suppose that C is a strict monoidal category, seen as a one-object
2-category. Then Ej SqC is the virtual double category of categories, and profunctors
enriched in C, described by [17].

Example 3.5.1.6. Suppose that £ > 0. We say that a globular multicategory X is
k-terminal when, for all i < k, the category Type X(7) is the terminal category. Now
suppose that & > 0, and that X is k-terminal. Then E;_1X is (k — 1)-terminal. Every
k-terminal globular multicategory is representable up to level £ — 1. Hence, E;_1X
is representable up to level k — 2. If, moreover, X is representable up to level k, then
Proposition 2.9.2.7 and Proposition 3.4.2.41 imply that E;_;X is representable up to
level & — 1.

We say that an n-category C is k-terminal, when C has a unique i-cell for all ¢ < k.
It is well known that higher categories of this sort correspond to (n — k)-categories
with a coherent choice of £ monoidal structures. In this case, SqC is a representable
k-terminal (n — 1)-globular multicategory, and so E;_; SqC is a (k — 1)-terminal

n-globular multicategory representable up to level (k — 2).

Definition 3.5.1.7. Let GlobMult, be the category of k-terminal globular multi-

categories. There is a canonical functor

GlobMulty,,, "™ GlobMultr,

such that shift X = X(%, x) where * is the unique 0-type of X ; that is shift X forgets
the 0-types and terms of X. An w-terminal globular multicategory is an object in the

limit of the following diagram:
- S GlobMulty, —2% ... GlobMulty, = GlobMult

This amounts to a choice of k-terminal globular multicategory X, for each k > 0, such
that shift X, = Xj.. We denote the 2-category of w-terminal globular multicategories
by GlobMultr,.

A symmetric monoidal globular multicategory is an w-terminal globular multicate-
gory such that X, is representable up to level k, for each k. We denote the 2-category
of symmetric monoidal globular multicategories with chosen compositors and com-

positor preserving homomorphisms by GlobMultgyy,.
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Example 3.5.1.8. Suppose that C is a symmetric monoidal category. Then, for each
finite k, there is a k-terminal k + 1-category B*C such that a k-cell of B*C is a 0-cell
of C, and an (k+1)-cell of BC is an 1-cell of C. Hence, we have a symmetric monoidal

globular multicategory Vg C such that
(VoC)r = SqB*C.

Let SymMonCat be the category of symmetric monoidal categories, and strict monoidal

functors. We have defined the objects-part of a strict 2-functor,
Vg : SymMonCat — GlobMultgyy,

Conversely, suppose that X is a symmetric monoidal globular multicategory. Let
Ve X be the category Type X, (0) = TypeX;(1) = TypeXy(2) =---. Let A, B € VgX.
Let myg,p : A ©9 B = A®y B be a compositor in X;. Then we define the product
A ® B to be A®q B. This defines a product functor

—®—ZV®XXV®X—>V®X

Since A®q B can be seen as the target term of a compositor A®iB — A®y B in Xiiq
for each k£ > 0, an Eckmann-Hilton argument implies that this product is symmetric.

Hence, we have defined the objects-part of a strict 2-functor
Vg : GlobMultgy,, — SymMonCat .

We have a strict 2-adjunction:

Ve

TN
SymMonCat 1 GlobMultgym

1\‘}/

whose unit is an equivalence.

Example 3.5.1.9. Suppose that X is an w-terminal globular multicategory. Then,

following Example 3.5.1.6, we can define an w-terminal globular multicategory EX by
(EX);, = ExXjq
This assignment defines a functor
GlobMultr, —2— GlobMultr, .
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If X'is symmetric monoidal, then EX is also symmetric monoidal. Let E : SymMonCat —
SymMonCat be the enrichment functor on symmetric monoidal categories. Then the

following diagram commutes:

SymMonCat —E— SymMonCat

L d

GlobMultgy, —= GlobMultgym

P P

SymMonCat £, SymMonCat

Hence, our notion of enrichment agrees with the usual notion of enrichment of sym-

metric monoidal categories.

3.5.2 Iterated Strict Enrichment

The modules construction is closely connected to the process of iterated enrichment.
In this section, we describe this correspondence, and use it to formalize many of the
previously-mentioned intuitions about the n-modules construction. It is worth point-
ing out that in order to iteratively enrich, we must first shift the level of enrichment:
the collection of categories enriched in “categories enriched in X at level k£ + 1”7 with
its monoidal (or multicategory structure) is described by EpE;.1X. More generally,

whenever k + | < n, we define [-fold enrichment at level k to be the composite:
EiEr1 - Egy
Example 3.5.2.1. Suppose that X is an w-terminal globular multicategory. Then,
(EEX); = EyEjp 1 X0

Thus, the need to change level is absent in this case, since it is implicitly handled by

the shift functor. Applying the results of Example 3.5.1.9, we have that
Ve (E"X) 2 E"Ve X, E"C =V E"V(C

Hence, our notion of iterated enrichment agrees with the usual notion of iterated

enrichment of symmetric monoidal categories.

Inspecting the description of the families construction above, the following result

becomes apparent:
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Proposition 3.5.2.2. Suppose that | < j. Then, we have that Fam : GlobMult —

GlobMult preserves homomorphism types at level j.

This allows us to describe situations in which families constructions and modules

constructions commute:

Proposition 3.5.2.3. Suppose that i < j. Then the following square commutes up

to natural isomorphism:

GlobMult M4 GlobMult

Fam{i}l gﬂ ¢i,j lFam{i}

GlobMult —— GlobMulty;”

Remark 3.5.2.4. Note that in order for this result to hold up to isomorphism, and
not just equivalence, we need to use a definition of Fam!" which uses a particu-
lar choice of one-element indexing families, and pullbacks, as opposed to allowing

isomorphic indexing families.

Proof. Let n < w. First suppose that n < i. Then Mod¥}Y(n) = Y(n) =

Fam " Y(n) for any globular multicategory Y, and so we have an isomorphism
Mod¥} Fam{" X(n) = X(n) = Fam!™ Mod¥} X(n).

Now suppose that i < n < j. Then, for any globular multicategory Y, Fam{" Y(n)
does not depend on any levels of Y above n; that is Fam{” Y(n) = (Fam!" tr,,)Y(n).
Furthermore, tr,, Mod} X 2 X. Hence,
Mod¥} Fam'™ X(n) = Fam'™ X(n)

= Fam!” tr,,X(n)

>~ Fam{" tr, Mod"} X(n)

= Fam!™ Mod"} X(n)
Finally, suppose that j < n. Then an n-type M of Mod’} Fam!" X consists of a pair
of sets of i-types {s;M(¢) | ¢ € Is,p}, and {t;M(¢) | ¢ € I; i} in X together with, for
each ¢ € Iz, € Iy

e An n-type M(¢,t') in X such that s;M(¢,t/) = (s;M)(¢), and t;M(¢,0/) =
(t:M)(V),

e Data making M (:,//) an n-type in Mod} X
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On the other hand, an n-type in Fam{" Mod"} X consists of a pair of sets of i-types
{s;M (1) | v € I} and {t;M(¢) | v € I, )} in ModY X(7) = X(i) together with,
for each ¢ € I, € It p, an n-type M(¢, ') in Mod¥} X. This is exactly the same
data described by an n-type in Mod¥} Fam!"? X. The terms of Mod¥} and Fam{"
can be compared in a similar manner. These comparisons induce the required natural

isomorphism. O

This result implies the following corollary, which allows us to see iterated enrich-

ment as the composite of a families construction with a modules construction:

Corollary 3.5.2.5. We have a natural isomorphism,
EEpiy - - By & Mod b+ gy (bt}
Example 3.5.2.6. These results also work for finite n. In this case, we have that
Mod Span(Set,,) = Mod™ Fam™ 1,, 2 E,E, - - - E, 1.

Hence, the collection of higher modules in Set can be seen as the result of iteratively
enriching starting with the terminal object. Since 1,, = VT is symmetric monoidal,

we have that
Vo E'"l =V, E"T

Thus, the symmetric monoidal category of 0-types in Mod Span(Set,,) is the symmet-

ric monoidal category of n-categories.

3.5.3 Infinitely Iterated Enrichment

We now consider the infinitely-iterated enrichment. Let Uy : GlobMult;; — GlobMult
be the functor forgetting coproducts at all levels. Suppose that n > —1. Let
E"Uy = Eq---E, : GlobMult;; — GlobMult. Then the counits of the adjunctions

defining Fam and Mod induce a canonical natural transformation:
e E" = E"

In order to make this precise, we define the natural transformation y= : B, Uy =
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Uy to be the following composite:

En+1 UH

1 1 0,...,n,n+2,...
Mod "1} g Fam tnt1h grlntH g 0-omnt 2,3
Mod{n+1} U§n+1}yﬁ+1U§O ..... n,n+2,...}

Mod{n+1} U§n+1}UE[0 ..... n,n+2,...}

Mod "1} Uy
v Un

Un

Then we define ¢ : Ey---E,,1Uy = Eo---E, Uy to be Eg---E,y®. Hence,

n

whenever X is a globular multicategory with colimits, we can consider the limit of

the following diagram:

E E E
L2 L EX Sy EIX 0 EOX

We denote this limit by E“X.

Now let M™ = Ul Mod™ : GlobMult — GlobMult, and let €¥ : M,,; — M; be
the transformation which forgets modules data at level n. Let F" = U][l" ) Fam!™! U :
GlobMulty; — GlobMult, and let €l : F*t1 — F™ be the transformation which

computes coproducts at level n + 1. Let
" E" — M"F"

be the natural isomorphism induced by Corollary 3.5.2.5. Then by naturality we have

the following result:

Proposition 3.5.3.1. The following square of natural transformations commutes:

Ent+1 Us Prt1 Mn—i—ljc‘n—&-l
eEl lM"eEoe#}'”Jﬂ
EnUH 2 , Mnfn
For any globular multicategory Y, let M“Y be the limit of the following diagram

in GlobMult:
ey ey ery
con 2 MY 42— MY 25 MOY
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Theorem 3.5.3.2. We have a natural isomorphism

D, BY —= MYFY ~ Mod® Fam /.

Proof. Recall that, for any globular multicategory Y, M®“Y is the limit of the following

diagram in GlobMult:
ey eny ety
cn 2 M2Y s MY 2 MOY

Similarly, for any globular multicategory with coproducts X, Remark 2.9.3.9 tells us
that F“X is the equivalent to the limit of the following diagram in GlobMult:

€2

II EH €H
5, P 2 pix 90, pox

Now consider the following diagram, whose squares commute by naturality:

HF oy ST 1oy 6T 400 70
— M*FX — M FX — M FX

MQE% Mle% MOE%
Pyt e rl e Fl
S LAY VLY > QuANG VIS QUESNYVIVD
Ml MOl

M26]1_I
GH.FQ €'H]_-2 6’)—[]:2

2= MPPX = MUK S MOFPX
./\/115%J

2.2
M=y

0.2
MPeq;

N .
7 .

N .
7 .

Since each M, preserves limits, taking the limit of the rows we obtain

e%“]—'“’ 9 e}"]—'W 1 62]".7:W 0
MEFX — T MIFOX —0 5 MOFeX

Consequently, the limit of the whole square is the limit of this diagram, and this is
MY F¥X. On the other hand, the limit of the whole square must be the limit of the

diagonal,
M262H062F2 MQFQ M1€h061f1 lel MOEOHOE()]:O MOFO,
Applying, Proposition 3.5.3.1, this diagram is isomorphic to
& &
E2X ———— E'X —>—— EX,

E
€

—
and the limit of this diagram is E“X by definition. Hence, we have constructed a
natural isomorphism ®,, : E¥ =2 MY“F¥ as required. H
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Example 3.5.3.3. Suppose that X = 1. Then E“1 is the limit of the following
diagram:

E) . B(1) 0 !
o R ) SR — 2

However, Theorem 3.5.3.2 implies that E“1 ~ Mod SpanSet.Thus, in the spirit of [20],
we have exhibited Mod SpanSet as the canonical limit of a process of iterated enrich-
ment. In fact, we can make a precise comparison with the description of Strw-Cat
found ibid. Let lLgyy, be the terminal symmetric monoidal globular multicategory.

Then consider the limit E“1g,,, of the following diagram in GlobMultgy,:
B R, — 2 Blgm ———— gy, (1)

Applying the functor (=)o : GlobMultgy,, — GlobMult, we obtain precisely the
above globular multicategory, and taking the limit we find that (E“lgyy)o = E“1.
Thus,

(E¥Igym)o = E¥1 ~ Mod SpanSet

On the other hand, since Vg1 = T, we have an isomorphism of diagrams:

This induces an isomorphism between the limits of the top and bottom rows in

i — V®E218ym I V®E1]18ym — V®E018ym

N

. —— BT s ELT s EOT

14

SymMonCat. By the results of [20], the limit of the bottom row is the symmet-
ric monoidal category of strict w-omega categories. Since Vg is a right adjoint, it

preserves limits. Hence, the limit of the top row is Vg E“lgym,. Thus,
Vo EYlgym ~ Strw-Cat.

Example 3.5.3.4. Both Mod!" and Fam{" preserve limits of w-length chains. It
follows that E preserves limits of these chains. Hence EE*1gy,, = E*1gy,,. Combing
this observation with Remark 3.5.1.2, we have that
tr; Mod SpanSet =~ tr{(E“Lgym)o
g tr1<EEwﬂsym)0
&= trlEo(E“’]lSym)l
= Eotl"l(Ew]lSym)l
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However, considering the definition of Vg in Example 3.5.1.8, for any symmetric
monoidal globular multicategory X, we have that tr(X); = SqVgX. (Here we view
Vg as a l-object 2-category.) Hence,

tr; Mod SpanSet ~ Ej Sq Vg E¥1gym ~ Ejy Sq Strw-Cat.

Hence, by Example 3.5.1.5, we have that tr; Mod SpanSet is equivalent to the virtual
double category of categories, functors, profunctors, and transformations enriched in

strict w-categories described by [17].
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Chapter 4

Fibrational and Weak
Homomorphism Types

In this chapter we weaken the rules defining strict homomorphism types in order to
define two different notions of homomorphism type: fibrational homomorphism types,
and weak homomorphism types. While types in globular multicategories with strict
homomorphism types behave like strict higher categories, types in globular multi-
categories with weak or fibrational homomorphism types behave like weak higher
categories. We show how models of dependent type theory with identity types in-
duce globular multicategories with fibrational homomorphism types, while models of
type theory with path types (that is propositional identity types) induce globular

multicategories with weak homomorphism types.

4.1 Pre-homomorphism Types

We first describe a common structure underlying globular multicategories with strict,

fibrational, and weak homomorphism types.

Definition 4.1.0.1. We say that a globular multicategory has pre-homomorphism
types when its underlying globular multigraph is reflexive and we have the following

structure:

e For each n-term f: ' — M, sf -+ tf and each (n — 1)-variable z : Ain " a

J-term
Jo(f) T @, Ha— M, sf—>tf.

e Suppose that 0 < k <n. Let f : ' — M be an n-term. Then for each k-variable
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x: Ain ' and any term-wise parallel (n — 1)-terms

Js s P, Ha —> sM
jttr@xHAHtM

such that
tx;js = Sf

tx;jt = tf

we have a J-term

Jgs’jt(f) D®, Ha — M,  jJs — J;.

We denote the category of globular multicategories with pre-homomorphism types by

GlobMult})®.

Example 4.1.0.2. Every globular multicategory with strict homomorphism types

has pre-homomorphism types.

Remark 4.1.0.3. An algebraic pre-equivalence of globular sets is a map of globular

sets, f: X — Y together with:
e For each 0-cell a € Y(0), a O-cell jf(a) € X(0).

e For each n > 0, each pair of parallel n-cells a,b € X (n), and each (n + 1)-cell
¢ € Y(n+1), such that sc = f(a) and tc = f(b), an (n+ 1)-cell jjﬁ’b(c) such that
5j**(c) = a and tj**(c) = b.

Let X be a reflexive globular multicategory. Suppose that I' is an n-context, A
is an n-type A, g : sI' = sA and h : tI' — tA are term-wise parallel (n — 1)-terms.

Then, we define the globular set

[ — M, g —h]

so that
[ — M, g - h]](0)=["— M, g—h],
T — M, g—-hl](1)={f:T — Huy | surf =9, tnrf =h},
[0 — M, g—=>hl2)={f:T = Hi|snrf =g tasrf=h},
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Example 4.1.0.4. Suppose that A and B are O-types. Then, the following three
diagrams depict a typical 0-cell f € [[A — B, x — #]], a 1-cell ¢ such that s¢ = f
and t¢ = g, and a 2-cell 6 such that s = ¢ and t0 = 1 respectively:

A

Hp B
Example 4.1.0.5. Suppose that M, N and O are 1-types. Then, the following three
diagrams depict a typical 0-cell f € [[M ©g N — O, h -+ i]], a 1-cell ¢ such that
s¢ = f and t¢ = g, and a 2-cell 6 such that s6 = ¢ and tf = 1 respectively:

Each n-substitution r : A — I' induces a composition map
[0 — A, g-—hl] —— [[A— A, sr;g—tr;h].

Let S be a set of types in X such that, for each m-type in S, we have that m > n.
To give a pre-representation structure on r relative to S is to give, for each m > n,
each m-type M in S, and each pair of term-wise parallel (m — 1)-terms g : sI' —
sM, h : tI' — tM, a choice of algebraic pre-equivalence structure on the map r; —.
When S is the set of all m-types in X, for m > n, we omit the “relative to” part of
this definition. When S = {M} is a singleton, we will speak of (pre)-representations
relative to M.

It follows that to equip a reflexive globular multicategory with pre-homomorphism
types is to give, for each k < n, each n-context I'; and each k-variable x : Ain I, a

pre-representation structure for the reflexivity substitution v} : I' @, H4 — T.

4.1.1 w-Precategories

Globular multicategories with pre-homomorphism types already have enough struc-
ture to endow collections of terms with notions composition and unit. However, this

data need not be coherent. We follow [13] and make the following definition:
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Definition 4.1.1.1. An w-precategory is a globular set X together with

e A composition operation — o — : X(n) xxm-1) X(n) — X(n), allowing us to
compose parallel n-terms, such that whenever ¢, € X,, and t¢ = s, we have

that s(¢ o) = s¢ and t(¢p o ¢) = t).
e An identity operation id : X(n) — X (n + 1) such that sid; = tidy = f

A homomorphism of w-precategories is a map of globular sets preserving the compo-

sition and identity operations.

Definition 4.1.1.2. Suppose that f, g are parallel n-cells in a globular set X. Then
a transformation ¢ : f — g is an (n + 1)-cell ¢ in X such that s¢ = f, and t¢ = g.

Suppose that X is a reflexive globular multicategory. Suppose that f,g : I' —
A, sf - tf are parallel n-terms in X. Then a transformation ¢ : f — ¢ is a term
¢: T — Ha, f + g;thatis, a l-cell in [[I' = A, sf —+ tf]].

Definition 4.1.1.3. Suppose that X is a globular multicategory with pre-homomorphism
types. Suppose that M is an n-type in X, and that H, : H 4 is in the canonical n-
variable in the n-context [H4]. Suppose that x; = tH,. Then we define

my = Jo, (idp,) : Ha O Ha — Ha,  idg —=ida.
When M : A -+ Bis an n-type, and m : M is the unique n-variable in [M], we define

Definition 4.1.1.4. Suppose that ¢ : f — ¢g and ¢y : ¢ — h are transformations
between n-terms in globular multicategory with pre-homomorphism types X. Then

we define the composite ¢p o1 : f — h by
pot) = (¢ On);my.
We define the unit id; of a term f: " = A, sf —+ tf by
id; = fita.
Thus, we have equipped [[[' = A, sf -+ tf]] with the structure of an w-precategory.

Definition 4.1.1.5. Suppose that ¢ : f — f’. Then, given a term g : I' — M, f' -+

tg, we define the composite

pog:f—tg

133



to be (¢ ®, g); Apr. Similarly, given b : I' — M, sh -+ f, we define
hodg¢:sh—+ f

to be (9 On &); pur-

Example 4.1.1.6. Suppose that a : A — I', sa - ta is a substitution in X. Then

it follows that the composition operation
[T — A, g—+h] == [[A— A, sag—ta;h]].
is a homomorphism of w-precategories

This w-precategory structure allows us to define a notion of equivalence between
n-terms in X. Indeed, there are a number of good candidates for the notion of equiv-
alence. See [13] where two different notions are compared, and see also [53][§4] where
the similar problem of defining equivalences in homotopy type theory is considered.
We will adapt the bi-invertible maps of the latter source to our setting. This notion

is studied in [39].

Definition 4.1.1.7. We define equivalences between parallel n-cells coinductively.

Suppose that f, g are parallel n-cells in an w-precategory. Then an equivalence
¢p:fryg

consists of a transformation ¢ : f — g, together with a pair of transformations

ol ¢ - g — f, and equivalences between (n + 1)-terms:
QSLqu%idg, gbogbR%idf.

Proposition 4.1.1.8. Whenever F : X — Y is a homomorphism of w-precategories,
and f,g € X (k) are parallel cells, we have that f =~ g — F(f) =~ F(g).

Proof. This follows from a straightforward coinduction. m

Example 4.1.1.9. Suppose that f ~ ¢g: ' — A are equivalent n-terms in a globular
multicategory with pre-homomorphism types. Suppose that a : A — I' is an n-
substitution. Then by Proposition 4.1.1.8 applied to a; —, we have that a; f = a;g.

Definition 4.1.1.10. We say that an w-precategory is idempotent if, for any n-cell
f, we have that
idf Oidf ~ 1df .
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Example 4.1.1.11. Suppose that X is an idempotent w-precategory, and that f €
X (k). Then, since,
idf @) ldf ~ ldf

we have that f ~ f.

Definition 4.1.1.12. We say that a globular multicategory X has idempotent pre-

homomorphism types when, for any n-type A, we have that
T40Ty =~ Ty.

Remark 4.1.1.13. Since for any n-term f, we have thatid; = f;t4, pre-homomorphism

types are idempotent exactly when, for all f,

Thus, X has idempotent pre-homomorphism types if and only if for any n-context I,
any n-type A, and any term-wise parallel (n —1)-terms g : sI' — sA and h : tI' — tA,
the w-precategory.

D — 4, g h]

is idempotent.

Definition 4.1.1.14. A pre-equivalence between w-precategories is a homomorphism

with the structure of a pre-equivalence between their underlying globular sets.

Remark 4.1.1.15. We say that an pre-equivalence is an algebraic acyclic fibration

when additionally:

e For each O-cell a € Y(0), we have that
f((a)) = a,

e For each n > 0, each pair of parallel n-cells g,h € X(n), and each (n + 1)-cell
¢ € Y(n+ 1), such that sc = f(g) and tc = f(h), we have that

F(G7"(c) = c.

If, furthermore, the choices defining an algebraic acyclic fibration are unique, then it

follows that f is a level-wise bijection; that is, an isomorphism of globular sets.

Definition 4.1.1.16. An algebraic weak equivalence of w-precategories is a pre-

equivalence F': X — Y together with the following data:
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e For each O-cell f in Y(0), an equivalence F(j(f)) ~ f

e For each n > 0, each parallel (n — 1)-cells g,h € X(n — 1), and each f € Y(n)
such that F(g) = sf and F(h) = tf, an equivalence

vEM(f) s FGEN ) ~ f

We say that a homomorphism F' : X — Y is a weak equivalence when it can be

equipped with the structure of an algebraic weak equivalence.

Thus, a homomorphism of w-precategories is a weak equivalence when it is, in a
precise sense, essentially surjective at all levels. The following propositions immedi-

ately follow from this definition:

Example 4.1.1.17. Whenever X is idempotent, Example 4.1.1.11 implies that the

identity homomorphism idy : X — X is a weak equivalence.
Proposition 4.1.1.18. Weak equivalences are closed under composition.
Proof. This follows from Proposition 4.1.1.8. O

Proposition 4.1.1.19. Whenever F' : X — Y is a weak equivalence and F(f) ~ F(g)
'Y, we have that f ~ g in X.

Proof. Suppose that we have an equivalence between n-cells ¢ : F/(f) ~ F(g). Then

we have

i @) f — g, ¥ (") g — f, i (") g — f.

We have that oL ; oL ;
F(F (97) 0j%(¢)) = F(F (¢7)) o F(j5°(9))
= ¢l og
~ id,,
and, by a similar argument, F(j“}’,’f (¢) o jé:g (¢T)) ~ id;. Since these are equivalences

of (n+ 1)-cells in Y, the result now follows by coinduction. ]
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4.2 Definition

We now describe two weakly coherent notions of homomorphism type.

Definition 4.2.0.1. We say that a globular multicategory has fibrational homomor-

phism types when it has pre-homomorphism types such that:

e For each n-term f: T — A and each (n — 1)-variable x, we have that
Ta; Jx(f) =/

e Suppose that 0 < k <n. Let f : ' — M be an n-term. Then for each k-variable
x: Ain I and any term-wise parallel g : sI' ®, Ha — sM, h: tI’ &, Ha — tM
such that t,; g = sf,t,; h = tf, we have that

i JIN(f) =T
We denote the category of globular multicategories with fibrational homomorphism
types by GlobMult,”.

Definition 4.2.0.2. A globular multicategory with weak homomorphism types is a
globular multicategory with pre-homomorphism types, together with the following
data:

e Foreach n-term f : I' — A and each (n—1)-variable x, we require an equivalence
ve(f) 1 va; Jo(f) = f.

e Suppose that 0 < k <n. Let f : I' = M be an n-term. Then, for each k-variable
x:Ain I and any term-wise parallel g : sI' ®, Ha — sM,h : tI' &, Ha — tM

such that t,; g = sf,t,; h = tf, we require an equivalence
VIR (f) eas JEN(f) = f.
We denote the category of globular multicategories with weak homomorphism types
by GlobMulty)*.

Remark 4.2.0.3. Suppose that r : A — I" is a substitution in a globular multicat-
egory with pre-homomorphism types X. Let S be a set of types in X such that, for
each m-type in S, m > n. Recall that a pre-representation structure on r relative

to S is a choice, for each m > n, each m-type M in S, and each pair of term-wise
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parallel (m — 1)-terms g : sI" — sM,h : tI' — tM, of an algebraic pre-equivalence

structure on the map
[0 — M, g—h]] —— [[A— M, srig—trh].

A fibrational representation structure on r relative to S is a pre-representation struc-
ture on r whose pre-equivalences are algebraic acyclic fibrations. A weak representa-
tion structure on r relative to S is data making these pre-equivalences algebraic weak
equivalences.

Recall that to equip a reflexive globular multicategory with pre-homomorphism
types is to give, for each k < n, each n-context I', and each k-variable x : AinI', a pre-
representation structure for the reflexivity substitution vl : T @, H4 — . Tt follows
that a choice of pre-homomorphism types is a choice of fibrational homomorphism
types if these pre-representations are fibrational representations. Furthermore, to give
a choice of pre-homomorphism types the structure of weak homomorphism types is

to choose data making these pre-representations weak representations.

Remark 4.2.0.4. We say that a fibrational representation on r is strict, when the
choices defining the associated algebraic acyclic fibrations are unique. In this case,

each map
0 — A, g—h)] — [[A— A, sr;g—tr;h].

is an isomorphism of globular sets and, furthermore, the pre-equivalence j defines the
inverse of this map. It follows that a substitution has a (necessarily unique) strict
representation structure if and only if it is strictly representing.

4.2.1 Examples

Example 4.2.1.1. Strict homomorphism types are fibrational homomorphism types.
In fact, a globular multicategory with fibrational homomorphism types has strict

homomorphism types if and only if for any parallel terms f and f’ we have that
i f=tf = f=f

Example 4.2.1.2. Suppose that X has fibrational homomorphism types. Then, X

has weak homomorphism types.
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Example 4.2.1.3. Recall that every type theory, T, induces a globular multicategory
Gr(T). When T is equipped with identity types, the identity types, reflexivity terms
and the computation rules for these types in 7 equip the globular G (7)) with fibra-
tional homomorphism types. When T is equipped with path types, the path types,
reflexivity terms and the computation rules for these types in T equip the globular
Gr(T) with weak homomorphism types. We will make this precise in Section 4.3

below.

Example 4.2.1.4. Similar definitions work for the finite case. In the 1-dimensional

case strict, fibrational, and weak homomorphism types all coincide.

Example 4.2.1.5. Suppose that P is a globular operad with a choice of contraction.

Then P can be equipped with pre-homomorphism types as follows:
e For each type n, we define H,, = n + 1. We define t,, = 1i4"14",

e For each n-term f: 7w — n, sf -» tf, and each variable x : A € w(n — 1), we
define

J(f) :lfrngA T By Ha —>n, sf —+tf.

Note that t,;J.(f) : 7 = n, sf - tf is parallel to f.

e For each k < n — 1, each n-term f : m — n, sf -» tf, each variable z € 7(k),
and each pair of term-wise parallel (n — 1)-terms g : 79 ©, Ha — n — 1 and
h:mg@®, Ha — n—1such that v,; g = sf and v,; h = tf, we define

I =100 L T @, Ha —n, g+ h
Note that t,; J9"(f) : @ — n, sf -+ tf is parallel to f.
These data induce weak homomorphism types by the Lemma 4.2.1.6 below.

Lemma 4.2.1.6. Suppose that P is a globular operad with a choice of contraction.

Suppose that f,qg : ™ — n are parallel n-terms in P. Then f =~ g.
Proof. We define ¢ : f — g, and ¢ : g — f by
o=17 o =1".

Then the (n + 1)-term ¢po¢: m —> n+1, g — g is parallel to id,. Similarly, the
(n 4+ 1)-term ¢ o 1) is parallel to id;. Hence, the result follows by coinduction. ]
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Proposition 4.2.1.7. The forgetful functor Uy : GlobMultgk — GlobMult creates
pullbacks.

Proof. Suppose that we have a pullback diagram

X xz Y /= X

Y — Z
in GlobMult such that X;Y and Z are globular multicategories with weak homomor-
phism types, and F and G preserve this data. Then to define a type (or term) A in
X x7 Y is to define a type (or term) mxA in X, and a type (or term) myA in Y such
that Frgx A = Gy A. Since F and G preserve weak homomorphism types, this allows
us to construct weak homomorphism types for X x5 Y. For example, for each type A
in X xz Y. we define H4 : A -+ A to be the unique type such that mxHa = Hry 4,
and myHa = Hr,a. In fact, given this choice of weak homomorphism types, mx
and 7y preserve weak homomorphism types. This property uniquely characterises
this choice of weak homomorphism types. Furthermore, the corresponding square in

G‘rlobl\/[ultvq_[Vk is clearly a pullback square. O]
Corollary 4.2.1.8. Discrete opfibrations reflect weak homomorphism types.

Proof. Recall that the globular multicategory of pointed sets SpanSet, has strict
homomorphism types, and that the universal discrete opfibration m, : SpanSet, —
SpanSet preserves strict homomorphism types. Up to size constraints, every discrete

opfibration can be described as a pullback 7y as in the diagram below:

el(F) —— SpanSet,

= - |-

X T> SpanSet

Suppose that X has weak homomorphism types. Then Proposition 4.2.1.7 implies
that el(F) has weak homomorphism types, and that 7y preserves this data. O

Corollary 4.2.1.9. WheneverC : P — SpanSet is a weak higher category parametrized
by a contractible globular operad, the globular multicategory of elements elC has weak

homomorphism types.

Proposition 4.2.1.10. Suppose that P is a normalised contractible globular operad
with strict composition along 0-types, with a choice of contraction. Suppose that
C : P — SpanSet is a weak higher category parametrized by P. Then, the vertical
globular multicategory V(C) has weak homomorphism types.
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Proof. Choose weak homomorphism types for P using Example 4.2.1.5. For each
n-type 1Y% in V(C), we define Hyn = H3™. We define tyn : 1% — H™ so that

T = F(cg ) (A),

Ocyn = tny1 17 +1—n+2,id, 1 — id,y1 .

Suppose that 7 is an n-pasting diagram, and that = € w(k) for some k& < n. Then
X(m @, H) = (X7) &, H. Note that this is a slight abuse of notation since x is a
k-variable in 7 on the left-hand side, and a (k 4 1)-variable in X7 on the right-hand
side. Suppose that f : I' — B is a m-shaped n-term in V(C). Suppose that T is
A-simple, and that x : H*A is a k-term in T for some k& < n. When k = n — 1, we
define J.(f) by

3.(f) =T, 03,(f) = J=(0y)-
Suppose that £k < n — 1, and that g : sI' &, Ha — sM and h : tI' ®, H4 — tM are

term-wise parallel (n — 1)-terms in V(C) such that t,;¢g = sf and t,; h = tf. Then
Osf = Og,;9 = O¢,; Oy, O¢f = O¢,;h = Oy, Opy.

Hence, we define J%" by

3g,h<f) =f, g9y = J%9%0 (o).

The laws for weak homomorphism types are now satisfied because they are satisfied
in P. O

4.3 Homomorphism Types and Two-sided Factori-
sations

4.3.1 Two-sided Factorisations

Let C be a category with pullbacks, and let F be a collection of spans in C. We
define Span(C, F) to be the subobject of SpanC such that an n-type M : A + B is
in Span(C, F) when the span M is in F, and whose n-terms are terms in Span(C, F)
between these spans. We will now describe the relationship between equipping such a
globular multicategory with homomorphism types and a notion of two-sided factori-

sation.
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Definition 4.3.1.1 ( [37]). A two-sided factorisation of a span

AyXYB

in C consists of a factorisation

A
f g

M

y \H(f\g)“

A B
We will follow North [37], and refer to diagrams of this shape as sprouts.

Remark 4.3.1.2. Suppose that f : X — Y is an arrow in the slice category C/Z.
Then, to give a factorisation of f in C/Z is to give a factorisation of f in C. The
analogous statement does not hold for two-sided factorisation systems. Suppose that
f,9: X — A Bisaspan in C/C x D. Then to give a factorisation of M in C/C' x D
is to give A, po(f, 9), p1(f, g) making the following diagram commute:

X
D
M
1(fs g)
B
| T
C D

However, a factorisation of M in C makes the top triangles commute, but does not
guarantee that the bottom rectangles commute. However, when A is a monomorphism
this subtlety disappears; this is the case in many naturally occurring examples where

A is required to be some sort of cofibration.

Remark 4.3.1.3. Suppose that n > 0 and let A, B : C' - D be parallel n-types in
SpanC. Let f,g: X = A, B be term-wise parallel n-terms. First suppose that n = 0.
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Then f, g amounts to a span in C, and to give a two-sided factorisation of this span

is to give a 1I-term A : X — M, f -+ g,

X — X

oua s

A—— B
M

in SpanC, filling the diagram above.

Now suppose that n > 0. Then, by Example 2.4.0.3, the span f, g corresponds to
a span in the slice category C/cg, ,p. Hence, to give a factorisation of this span is
to give a I-term A : X — M, f - g in Span(C/¢g, ,p), and this is the same as an
(n+1)-term A: X — M, f -+ g in SpanC.

Remark 4.3.1.4. Suppose that C has finite limits. Suppose that n > 0 and let
A, B :C - D be parallel n-types in SpanC as above. Let f, g be a span in the slice
category C/cg,_,p.- Then to give a factorisation of f,¢ in C/C ®,_1 D, it suffices to
give a factorisation of f,¢g in C/C x D. This follows from the fact that the whole
diagram below commutes if and only if the two upper rectangles commute and the
two lower rectangles commute.

M

- ~
po(f.9) p1(f.9)

<

me— Q&
M O ™

Definition 4.3.1.5. Suppose that we have a sprout

together with a span f,¢g: X =2 Y, B, and a commutative diagram of solid arrows of
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the following form:
C —— X

=
M
aub
AB==Y,Z

A pre-filler is a dashed arrow [ making the bottom square commute. We say that [ is

fll9

a filler when it also makes the top triangle commute. We say that a sprout (pre-)lifts

against a span, when every commutative diagram of this form has a (pre-)filler.

Remark 4.3.1.6. The notion of lifting a sprout against a span is exactly the notion

described in [37]. Our notion of pre-filler is a two-sided generalization of the lower

fillers described in [10,55].

Remark 4.3.1.7. Translating this definition into a statement about Span C we find
that a 1-term

C | ee— C
|
A—+— B
M
pre-lifts against a 1-type X : Y - Z when for any O-terms y : A - Y2 : B — Z
and 1-term
C | se— C
a;yl U, T lb;z
Y +— 7
X
thereisa I-term [ : M — X, y —+ z.
M
A—4— B
yl U, l lz
Y +— 7
X
This pre-lift is a lift when
O | se— C
al U r lb C —=0C
M _
A —+— B a;yl Iz lb;z
Y l z Y —+— 7
| v ] ;

~
1
N
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In other words, to give a choice of fillers witnessing that r pre-lifts against X is to
give a pre-representation of r relative to X. Furthermore, these pre-lifts are lifts if
and only if this pre-representation is a fibrational representation.

Now suppose that 1 < n < m, and that we have an n-term r : C' — M, a -+ b and
an m-type X : Y - Z where Y, Z : O - P. Then to give a pre-representation of r
against X is to give a pre-lift of the sprout r relative to the span X in C/O ®,_; P.

Such a term exists when, for any parallel m-terms y: A =Y, z: B — Z, we have a

filler
X

Y, z

—>

ﬁ§<—Q

ﬁé‘;

OP

in C. However, any pre-filler of the top part of the diagram in C satisfies the commu-
tativity conditions relating [ to O and P automatically, and so defines a pre-filler in
C/O ®,,_1 P. Hence, to give a pre-representation of r against X is to give a lift of the
sprout r relative to the span X in C. Similarly, to give a fibrational representation of

r against X is to give a lift of the sprout r relative to the span X in C.
Definition 4.3.1.8. Consider a diagram of the form

C —2 - X

-
e
m -
-
-
-
-

That is a term

Q
Q

Q
—
—

(=

<
‘—
‘—

IS4

~ S
- =
- £ 455 |
Wy

N

We say that [ is a weak filler, when m;[ ~ x in Span(C, F). A weak lift structure on

a pre-lift is a choice of weak fillers for each pre-filler. It follows that to give a weak

145



lift of a sprout r against a span X in C is to give a weak representation of r against
X in Span(C, F).

4.3.2 Homomorphism Type Categories

It is well known that type theories with identity types correspond to categories with
classes of maps satisfying suitable factorisation properties. For example, van den
Berg and Garner [571] describe a notion of identity type category and discuss how
these objects can constructed from suitable type theories. Ibid. the authors use these
data to describe the weak w-groupoid structure of the towers of identity types in a
type theory. A similar comparison is given in [10,55], where type theories with path
types are compared to path categories. We now describe two-sided analogues of these
notions, and show how these give rise to globular multicategories with fibrational and

weak homomorphism types respectively.

Definition 4.3.2.1. Let C be a category with finite limits. We say that C is a

pre-homomorphism type category when it is equipped with:
e a class F of spans called two-sided fibrations
e a class R of 1-terms in Span,(C) called representors.
such that the following conditions hold:
e Identities Identity terms are representors.

e Composition of fibrations: Whenever M : A - B and N : B —+ C are
two-sided fibrations, their composite M ®q N is a two-sided fibration.

e Composition of representors Whenever r : M — M’ and s : N — N’ are
representors such that » : f - g and s : ¢ -» h, their composite r ®q s :
M ®q N - M'® N'is a representor.

¢ Pre-Homomorphism Types: For each two-sided fibration M : A —+ B,
the trivial span M : M - M factorises in C/4xp into a sprout vy, : M —

Har, idys —+ idjys such that vy, is a representor and H,, is a two-sided fibration.

e Pre-Lifting: Whenever » : M — N is a representor and O is a two-sided

fibration, we have a pre-lift lift, of r against O.

Remark 4.3.2.2. The Composition of representors property is called the 2-sided

Frobenius condition in [37].
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Proposition 4.3.2.3. Suppose that (C,F,R) is a category with pre-homomorphism
types. Then the homomorphism types of C correspond to pre-homomorphism types in
Span(C, F).

Proof. Every substitution f : I' — A in Span(C, F) can be seen as a sprout ) f :
QRT — QA in C. We call a term in Span(C, F) a representor when this sprout is a
representor.

Suppose that M : A -+ Bis an n-type in Span(C, F). Then Pre-Homomorphism
Types induces a two-sided fibration H,,, and this defines an (n+1)-type Hys : M -+
M in Span(C,F). Pre-Homomorphism Types also gives us a reflexivity (n + 1)-
term vy : M — Hys in Span(C, F). This makes Span(C, F) reflexive.

Suppose that I' is an n-context in Span(C,F). Suppose that & < n, and that
x is a k-variable in I'. Since reflexivity terms are representors and identity sprouts
are representors, Composition of representors tells us that the substitution t[
is a representor. Furthermore, Composition of fibrations tells us that @I is
a two-sided fibration. Hence, @ tl pre-lifts against @®T. By Remark 4.3.1.7 and
Remark 4.1.0.3, this induces a choice of pre-homomorphism types for Span(C, F). O

Definition 4.3.2.4. A strict homomorphism type category is a pre-homomorphism
type category such that, whenever r : M — N is a representor and O is a two-sided

fibration, the pre-lift lift;, of r against O is a lift, and this lift is unique.

Definition 4.3.2.5. A fibrational homomorphism type category is a pre-homomorphism
type category such that, whenever r : M — N is a representor and O is a two-sided

fibration, the pre-lift lift;, of r against O is a lift.

Definition 4.3.2.6. A weak homomorphism type category is a pre-homomorphism
type category such that, whenever r : M — N is a representor and O is a two-sided
fibration, the pre-lift lift,, of r against O can be equipped with the structure of a
weak lift.

Theorem 4.3.2.7. Suppose that (C, F,T) is a category with pre-homomorphism types.

1. When (C,F,T) is a strict homomorphism type category, the globular multicate-
gory Span(C, F) has strict homomorphism types.

2. When (C,F,I) is a fibrational homomorphism type category, the globular mul-
ticategory Span(C, F) has fibrational homomorphism types.

3. When (C,F,Z) is a weak homomorphism type category, the globular multicate-
gory Span(C, F) has weak homomorphism types.
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Proof. This follows immediately from Remarks 4.2.0.3, 4.2.0.4 and 4.3.1.7 and Defi-
nition 4.3.1.8. [l

4.3.3 Construction from Identity Type Categories

We now show that various flavours of categories with homomorphism types are in-

duced by their one-sided analogues.

Definition 4.3.3.1 ( [>1]). An identity type category consists of a category C together
with two classes of morphisms Z, F C Arr C', whose elements we refer to as acyclic

cofibrations and fibrations respectively, satisfying the following properties:

e Fibrancy: The category C has a terminal object T, and for each object A, the

canonical morphism A — T is a fibration.

e Composition: The classes Z and F contain the identities and are closed under

composition.

e Stability: The pullback of a fibration along an arbitrary morphism in C exists,

and is a fibration.

e Frobenius: The pullback of an acyclic cofibration along a fibration is an acyclic

cofibration.

e Orthogonality: For each acyclic cofibration ¢, each fibration f, and each com-

mutative square of the form

C 2> M

/7(
[ )

there is a dashed arrow [ making the whole diagram commute.

e Identity Types: For each fibration f : M — A, the diagonal map Ay : M —

M x 54 M factorises into a composite
M <M Tdy —2» M x4 M
where t); is an acyclic cofibration and g is a fibration.

Example 4.3.3.2. The classifying category of any type theory with identity types
can be equipped with the structure of an identity type category. (See [51].)
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Remark 4.3.3.3. Note that Fibrancy, Stability, and Composition imply that ev-
ery identity type category has finite products, that product projections are fibrations,
and that the product of two fibrations is itself a fibration.

Remark 4.3.3.4. Stability implies that every isomorphism is both an acyclic cofi-

bration and a fibration.

Remark 4.3.3.5. By Fibrancy and Stability, every acyclic cofibration is a split

monomorphism.

Theorem 4.3.3.6. Fvery identity type category induces a fibrational homomorphism
type category such that:

o A two-sided fibration M : A -+ B is a span such that the corresponding mor-
phism (a,b) : M — A x B is a fibration.

o A representor is a sprout v : M — N, f -» g whose underlying morphism
r: M — N in C is an acyclic cofibration.

Proof. Identities follows immediately. Lifting implies that we have the pre-lifts
required by Pre-Lifting, and that these pre-lifts are lifts. Furthermore, Identity
Types implies Pre-Homomorphism Types. Hence, it remains to prove that we
can compose two-sided fibrations and representors.

We will first prove two-sided Composition of Fibrations, adapting an argument
in [17, Proposition 7.2.6]. Suppose that M : A - B and N : B + C are two-sided
fibrations, corresponding to fibrations (a,b) : M — A x B and (V,¢) : N -» B x C
respectively. Then by Stability, the left-hand map of the pullback square

MxgN — N

idps XBCl l(b'ac)

Mx(C —— BxC
b><1dc

is a fibration. By Composition and Remark 4.3.3.3, we also know that a x id¢ is a
fibration. Hence, by Composition, we have that the morphism a xgc: M xg N —

A x C'is a fibration as required.
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We next show that we have Composition of Representors. Suppose that we

have a commutative diagram of spans of the following form:

SN

We need to show that the induced morphism between pullbacks ¢ x j : M xg N —

M’ x g N’ is an acyclic cofibration. We have the following commutative diagram:

idys X7
Mxpg N 5 Moxp N —"2 M

\[iXidN \[’L’XidN/ \[Z

™

idyr xj
M/XB/NL) M,XB/N/ — s M

oo

N « J s N’ Y s B

Each quadrant is a pullback square. Since ¢ is a fibration, the downward arrows of
the bottom row must be fibrations. Similarly, since 1 is a fibration, the rightward
arrows of the second column must be fibrations. Since j is an acyclic cofibration,
Frobenius implies that is pullback, idy; x5 : M'x g N — M'x g N, is also an acyclic
cofibration. By a symmetrical argument, the arrow ¢ X idy: : M x B'N" — M’ x g N’
is also an acyclic cofibration. The composite middle rightward arrow is just the
projection m : M’ xp N’ — M’ and so it is a fibration. Since ¢ is an acyclic
cofibration, Frobenius implies that its pullback, ¢ x idy : M x BN — M’ xg N
is also an acyclic cofibration. By a symmetrical argument id,, xj : M xg N —
M x g N’ is also an acyclic cofibration. Composition now implies that the composite

(idpp xj) o (i x idps) = (i x idy) oidys xj : M x g, that is the arrow
M xp N <255 M x5 N,

is an acyclic cofibration. Since k is an acyclic cofibration, it is a fortiori a monomor-
phism. Hence, the canonical morphism M xp N — M Xpg N is an isomorphism.

Examining projections, it is clear that the composite
Mxp N —=5 Mxp N <L M xp N
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is precisely the canonical arrow ¢ X j : M xg N — M’ xp N’. However, by Re-

mark 4.3.3.4 and Composition, this composite is an acyclic cofibration. O]

Just as categorical models of identity types induce globular multicategories with
fibrational homomorphism types, categorical models of path types induce globular

multicategories with weak homomorphism types.

Definition 4.3.3.7 ( [10,55]). Suppose that C is a category, together with two classes
of morphisms W, F C Arr C, whose elements we refer to as weak equivalences and
fibrations. We refer to elements of W N F as acyclic fibrations. We say that C is a

path categorywhen it satisfies the following properties:

e Composition: Fibrations are closed under composition.
e Isomorphisms: Isomorphisms are acyclic fibrations.

e 2-out-of-6: If f: A— B,g: B— C,h:C — D are composable arrows, and
gf and hg are weak equivalences, then so are f,g,h and hgf.

e Stability: The pullback of a fibration along an arbitrary morphism in C exists,
and is again a fibration. The pullback of an acyclic fibration along an arbitrary

morphism in C exists, and is again an acyclic fibration.

e Path objects: For each object A € C, the diagonal map Ay : A - Ax A

factorises into a composite

A1, S AxA
where t); is an acyclic cofibration and g is a fibration.

e Fibrancy: The category C has a terminal object T, and for each object A, the

canonical morphism A — T is a fibration.

e Cofibrancy: Every acyclic fibration has a section.

Example 4.3.3.8. The classifying category of any type theory with propositional
identity types can be equipped with the structure of a path category. See [10)].

Example 4.3.3.9. Let C be a Quillen model category. If every object of C is cofibrant,
then the subcategory of fibrant objects in C is a path-category. In particular, both the
Kan-Quillen model structure, and the Joyal model structure on simplicial sets satisfy
this property. Fibrant objects in these cases are Kan complexes and quasi-categories
respectively. Hence, standard topological models of (00, 0)- and (o0, 1)-categories can

be organized into path categories.
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Theorem 4.3.3.10. Every path category induces a weak homomorphism type category
such that:

o A two-sided fibration M : A -+ B is a span such that the corresponding mor-
phism (a,b) : M — A x B is a fibration.

o A representor is a sprout r : M — N, f -+ g whose underlying morphism

r: M — N in C is a weak equivalence.

Proof. Composition of Fibrations follows by the same argument given in the proof
of Theorem 4.3.3.6. Pre-Homomorphism Types follows from [55][Proposition 2.3].
Pre-lifting follows from [55][Lemma 2.9], and these pre-lifts can be made into weak
lifts using [55][Theorem 2.38].

Finally, Composition of Representors amounts to the following well known
result: if we have a transformation between cospans whose objects are fibrant, and

whose legs are fibrations

B/

such that the vertical maps are weak equivalences, then the induced map between
pullbacks i X j : M xg N — M’ xp N’ is a weak equivalence. (These pullbacks are
homotopy pullbacks.) ]
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Chapter 5

Constructing Higher Categories

We have seen a number of manifestations of the close relationship between globular
multicategories with homomorphism types and higher categories. Various collections
of higher categories give rise to globular multicategories with homomorphism types.
Furthermore, each higher category induces a globular multicategory of elements, and,
under mild conditions, a vertical globular multicategory. We now aim to demonstrate
results in the opposite direction: given globular multicategories with homomorphism
types, we will construct higher categorical structures.

To this end, we study the structures attached to each type and term in globular
multicategories with homomorphism types. For each n, there is a globular multicate-
gory Ly T, with strict homomorphism types such that to give an n-type in a globular
multicategory X with strict homomorphism types is to give a homomorphism type
preserving homomorphism

Ly T, — X.

Viewing globular multicategories as algebraic theories this correspondence says that
each n-term in X is a model of LyI", or, equivalently, that the theory LyI” is the the-
ory of n-types with strict homomorphism types. Similarly, for each n-pasting diagram
m, there is a globular multicategory LyI” with strict homomorphism types such that
to give a m-shaped n-term in a globular multicategory X with strict homomorphism

types is to give a homomorphism type preserving homomorphism
Ly — X

Hence, the globular multicategory Lyl can be seen as the theory of n-terms with
strict homomorphism types. Thus, types and terms inside a globular multicategory

with strict homomorphism types can be understood by studying Ly T, and LyI7.
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We show that Lyl = 1, the terminal globular operad. Since 1 is well known to
be, in a precise sense, the theory of strict w-categories, it follows that each every O-
type in a globular multicategory X with strict homomorphism types has the structure
of a strict w-category in X. We show that, moreover, when X = Mod Y for some Y,
the O-types in Y are exactly strict w-categories in X. See Example 5.2.0.2.

In a similar vein, we show that LyI9 can be seen as the theory of strict functors
between strict w-categories. Thus, every O-term f : A — B in a globular multicategory
X with strict homomorphism types is, in a precise sense, a functor between the strict
w-categories in X corresponding to A and B. See Example 5.2.0.4.

These results and more serve to demonstrate a deep connection between strict
homomorphism types and strict higher categorical structures. Our next goal is to
describe a similar relationship between fibrational homomorphism types and certain
weak higher categorical structures.

It is well known that contractible globular operads can be seen as theories of
weak w-categories (see [0]). However, other weak higher categorical structures such
as higher functors are less well understood in the globular setting. See for instance
[23,25,20] for work in this direction. We develop a new approach to understanding
these objects. We define acyclic fibrations of globular multicategories; whenever Y —»
X is an acyclic fibration and X is the “theory of widgets” we view Y as a “theory
of weak widgets”. In particular, a globular operad P is contractible exactly when
the canonical homomorphism P — 1 is an acyclic fibration. This last result follows
from [22].

Having developed tools to understand weak higher categorical structures in glob-
ular multicategories, we then relate these structures to fibrational homomorphism
types. We mirror the approach taken for strict homomorphism types. For each n,
there is a globular multicategory LEPT,, with fibrational homomorphism types such
that to give an n-type in a globular multicategory X with fibrational homomorphism

types is to give a homomorphism type preserving homomorphism
LYPT, — X,

Hence, LYI7 is the theory of n-types with fibrational homomorphism types. Similarly,
for each n-pasting diagram 7, there is a globular multicategory L%PI” with strict ho-
momorphism types such that to give a m-shaped n-term in a globular multicategory
X with strict homomorphism types is to give a homomorphism type preserving ho-

momorphism
Fibyn
LT — X
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Hence, the globular multicategory LYPI? can be seen as the theory of n-terms with
fibrational homomorphism types. We show that there are canonical acyclic fibrations
LEPTL, — Lyl, and LEPI? — LyI". Thus, the theory of n-types with fibrational ho-
momorphism types is a weakening of the theory of n-types with strict homomorphism
types, and similar statements hold for theories of terms with homomorphism types.
In particular, every O-type in a globular multicategory with fibrational homomor-
phism types has the structure of a weak w-category, and every 0-term can be seen as
a weak w-functor between these categories. See Example 5.4.0.5 and Example 5.4.0.6.
We make a conjecture that would allow us to obtain similar results about globular

multicategories with weak homomorphism types.

5.1 Shapes of Types and Terms

Every globular multigraph can be viewed as a presheaf over a category whose objects
are shapes of types and terms. We can better understand the structure of types and
terms in globular multicategories with homomorphism types by describing how to

freely add homomorphism types to the representables induced by these objects.

Definition 5.1.0.1. We define a category G* of generic types and terms. Its set of

objects is the coproduct of sets
G + el(pd).

Thus, for each n € G, there is an object T,, in G, and for each w € pd(n), there is
an object I in G*. We refer to T, as the generic n-type, and we refer to I” as the

generic w-shaped n-term. There are four classes of arrows in G*:

e Every arrow 0 : m — n in G induces a corresponding arrow T,, — T,, between
generic types in GT. These arrows pick out the source and target types of

generic types.

e Every arrow o : m — n in el(pd) induces a corresponding arrow 17 : I — I"
between generic terms in G*. These arrows pick out the source and target terms

of generic terms.

e For each k < n, each n-pasting diagram 7, each map of globular sets z : k — 7

induces an arrow
. n
V, : Ty — I

in GT. These arrow pick out the variables (types) in the domain contexts of

generic terms.
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e For each k£ < n, each n-pasting diagram =, and 7,and each arrow A : k — n in

G, there is an arrow
ot: T, — 1"

in G™.These arrows pick out the output types of generic terms.
Composition of arrows in G is induced by composition in G-Set.

Theorem 5.1.0.2. The category of globular multigraphs is equivalent to the category

of presheaves over G .
Proof. This follows from [30, Proposition C.3.4 and Proposition 6.5.6]. ]

Remark 5.1.0.3. Each object of G* can be viewed as a globular multigraph or as
a globular multicategory. The globular multigraph corresponding to T,, has a unique
non-degenerate n-type. The globular multigraph corresponding to I? has a unique

n-term h,. This n-term is m-shaped. Each type A in I? corresponds to either:

e a cell in the pasting diagram 7 if A is in the source context of h.,
e or a cell in the representable n if A is in the target type of h..

Suppose that X is a globular multicategory. Then, by the Yoneda Lemma, an n-type
A in X corresponds to a homomorphism A : T,, — X, and a m-shaped an n-term f in

X corresponds to a homomorphism f : I? — X.

Remark 5.1.0.4. The composition of terms in X can also be described using opera-
tions on the generic types and terms. Let f, g be a pair of composable 0-terms in X.

Consider the following pushout of generic terms:

O*
Ty ——— I

I —— 1§ +o I§
Then the pair f, g induces a canonical homomorphism (f,g) : I3 +¢IJ — X such that
(f,g)ou = f and (f,g) oty = g. There is a canonical homomorphism

[

L — B+

that “picks out the composite”. Let h: A — B be the unique non-trivial term in TY.
Then c(h) = t1(Rh); 1a(h). It follows that (f,g) oc = f;g.

More generally, let m be an n-pasting diagram. Then 7 induces a diagram II :
el(r) — GlobMult such that
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e For each i € w(k), we have that II(i) = Ty.
e For each o : (k,i) — (K, 7) in el(w), we have that II(o) = T, : T; — Tj.

Let T, be the colimit of II. By construction, there is a canonical homomorphism
V, : T, — I? such that the restriction of V, to the component of T, corresponding
to i € w(k) is V. Intuitively, this arrow picks out the source context of the generic -
shaped n-term. Suppose that we have a m-shaped pasting diagram of pasting diagrams
(pi)ien- Let P :el(r) — GlobMult be defined so that:

e For each i € 7(k), we have that P(i) = I\ .

e For each o : (k,i) — (K, j) in el(w), we have that P(o) =17 : IF — ]I’;;.

Let I7 be the colimit of P. For each i € m(k), there is a homomorphism OF : Tj, — I% .
These together induce a canonical homomorphism O7 : T, — I7.

Hence, consider the following pushout in GlobMult:

o5
T, —>— I

Let A be a m-shaped n-context in X. Then A corresponds to a homomorphism
A:T, =X Let f:T = A, g: A — A be a pair of composable n-terms in X
such that f; is p;-shaped. Then f corresponds to a homomorphism f : I7 — X, and
g corresponds to a homomorphism g : I — X. It follows that there is an induced
homomorphism (f,g) : [7 +x I — X. Let h, be the unique non-trivial n-term in I7.
Then f(hx) = f. For each i € w(k), let h,, be the unique non-trivial k-term in I¥ .
Then g(h,,) = g;- Furthermore, there is a canonical composite h,; h, in the pushout
[T +- 1. Let 0 = O, pi- Let

Then (f,§)oc= f;g.

Remark 5.1.0.5. The category G* is a direct category. Let N be the poset of
natural numbers. There is an identity-reflecting functor dim : G* — N which sends
the generic n-type and all generic n-terms to the natural number n. Let U € G be
a generic n-type or n-term, identified with its image under the Yoneda embedding.
Then the boundary OU is the subpresheaf of U such that

w € IU(v) <= dimv < n.
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We will denote the canonical inclusion of the boundary by
wy : 0U — U.

In Section 5.3 we will use these boundary inclusions to describe a higher dimensional

notion of weakness.

Definition 5.1.0.6. Let GlobGraph be the category of globular multigraphs with a
reflexive globular set of types. Suppose that X is an object in GlobGraph. Suppose
that 0 < k < n, and let 7 be an n-shaped pasting diagram. Suppose that I' is a
m-shaped n-context, that M is an n-type, and that g : sI' — sM h : tI' — tM are
term-wise parallel (n — 1)-terms. Then we refer to a k-cell in [[I' — M, g -+ h]]
as a m-shaped k-transfor. We define the generic w-shaped k-transfor I3, to be the
initial globular multigraph with a reflexive globular set of types containing a m-shaped
k-transfor. When k = 0, this is just the generic term I7. When k > 0, the globular
multigraph ]I%L can be constructed by quotienting I, , so that its unique (n+k)-type
is HEM : HF"*M -+ HF~1M. Then to give a homomorphism,

I — X

preserving the reflexive structure on types, is to give a m-shaped k-transfor in X. We

define the boundary E)Hfﬁ just as for generic terms.

5.2 Strict Higher Categories from Strict Homo-
morphism Types

We now study results justifying the intuition that objects in globular multicategories
with homomorphism types are “higher category-like”. Given globular multicategories
with strict homomorphism types, we construct strict higher categorical structures.

Let X and Y be globular multicategories, and suppose that X has strict homo-
morphism types. Let Uy GlobMulty;, — GlobMult be the functor forgetting homo-
morphism types. Then, since U,, has a left adjoint, Ly, we have a natural bijection
between homomorphisms

Y — UyX

and homomorphism type preserving homomorphisms

L,Y — X
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When X = ModZ is the result of the modules construction, applying adjointness

again, such a homomorphism corresponds to a homomorphism
UyL,Y — Z.

In particular, when Y = T,, is a generic type, a homomorphism T, — U, X is just a
type in X, and so we can understand types in X by describing L,,T,,. Similarly, we

can understand terms in X by describing L, I7.

Remark 5.2.0.1. Let X be a globular multicategory. Then the types and terms of
L, X are inductively generated by the following rules:

e For each type (or term) A in X, there is a canonical type (or term) A in LyX.

e Whenever A is an n-type in L, X, there is a canonical (n + 1)-type H4 and a
(n+1)-term vy : A — Ha,idy —+ ida satisfying reflexivity rules.

Hence, each type in L, X is of the form HY for some A € Xandi > 0. Let f : T — HY,
be a term in L, X. Then I' must be of the form IV @,, Hp, B, - - - Bs, Hp,, for some
sequence of variables z1 : By,...,x; : B;. Precomposing with reflexivity terms, we

may obtain a term

n(f): T" — H'A,

and by induction we must have that

n(f) = a(f);vl,

for some g(f) € X. Thus f is of the form

Jona (8(F)5 ),

for some variables xy,...,2;, and ¢« > 0. In fact, every term of L, f is uniquely

determined by this data.

Example 5.2.0.2. The globular multicategory Ty has a unique 0-type x and a unique
O-term, id,. Thus, Ly, Ty contains a unique n-type, H}, for each n. Suppose that f, f’:
[ — H! are parallel n-terms in LyT,. Then we must have that g(f) = g(f’) = id,.
Since f, f’ are parallel, it now follows that f = f’. On the other hand, for any n > 0
and any n-dimensional pasting diagram 7, we can use J-terms to construct m-shaped
n-term J,(t}) in LyTy. Hence, L, Ty is the terminal globular operad 1. Thus, every
0-type of a globular multicategory with strict homomorphism types has the structure

of a strict w-category.
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Example 5.2.0.3. When n > 0, we think of L, T, as a theory of higher profunc-
tors. It follows from the description of Mod SpanSet in Example 3.5.3.4 that an
algebra of T is precisely a profunctor enriched in Strw-Cat. Thus, every 1-type in a
globular multicategory with strict homomorphism types has the structure of a strict

w-profunctor.

Example 5.2.0.4. The globular multicategory Ij contains exactly two O-types A and
B and its only non-trivial O-term is a term fy : A — B. Thus, the types of LyI)
are of the form H%, HE for each k. The terms of Ly StrI) can be divided into three

classes:

e The collection of terms such that g(f) = id4 assemble into a copy of the terminal

globular operad 1.

e The collection of terms such that g(f) = idp assemble into another copy of the

terminal globular operad 1.

e Suppose that f is a term in L, I3 such that g(f) = fo. Let 7 be a k-pasting
diagram. Let m4 be the unique m-shaped context in the terminal globular operad

generated by A. Then there is a unique term w4 — H% namely J,(fo;t%).

Let F : U, LI} — Span(Set) be an algebra of U, Ly ). Then these collections

induce:
e An w-category F(A)
e An w-category F(B)

e For each k-pasting diagram 74 in F'(A), we have a unique assignment sending 4
to the k-type H*B. In other words, we have a strict w-functor F(A) — F(B).

Thus, we think of Ly, I3 as the theory of strict w-functors. It follows that every 0-term
in a globular multicategory with strict homomorphism types has the structure of a

strict w-functor.

Example 5.2.0.5. Let LHH%O be the generic k-transfor between 0-terms with strict
homomorphism types. It follows from Example 3.5.3.4 that an algebra of LH]IS"O is a

strict natural transformation between strict w-functors.

Remark 5.2.0.6. By taking truncations, we obtain similar descriptions of the n-
globular multicategories whose algebras are strict n-categories, strict profunctors,
between these categories, as well as strict higher n-functors and strict higher trans-

formations.
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Suppose that X is a globular multicategory with strict homomorphism types.
Suppose that B is a O-context in X, and that A is a O-type in X. Then the strict w-
category structure on A induces a strict w-category structure on globular set [[I" — A]]

of 0-terms with codomain A. We define a strict w-category C : 1 — SpanSet as follows:
e For each n, we set C(n) = [[B — A]](n).

e Let A/ : 1 = L30 — X be the homomorphism corresponding to A. Let 7 be
an n-pasting diagram, and let ¢, : @ — n be the unique w-shaped term in
1. For each n-pasting diagram 7, a map p : 7 — [[I' — A]] is equivalently a
substitution p : I' — A’(7) in X. Hence, we define the operation C(c,) by

C(cx)(p) = p; A'(cq).

Now suppose that A, B are parallel n-types in X. Then X(A, B) is a globular multi-
category with strict homomorphism types. Each n-type M : A + B in X is a 0-type
in X(A, B), and consequently we have a homomorphism M’ : 1 = L0 — X(A, B).

Arguing as above, the homomorphism M’ allows us to equip the globular set
0 — M, g 4]

with the structure of a strict w-category for each n-context I', and each pair of term-
wise parallel (n — 1)-types g : sI' - A and h : tI' — B.

5.3 Homotopical Tools for Globular Multicategories

By Remark 5.1.0.5, the category G* of generic types and terms is a direct category.
This induces a weak factorisation system on globular multicategories and related
structures. We will use this weak factorisation system to understand the structure of

objects in globular multicategories with fsbrational homomorphism types.

Definition 5.3.0.1. Let us denote the set of boundary inclusions of GT by
I={w:0U0 —U|UeG"}.

Then [ cofibrantly generates a weak factorisation system (£, R) on the category of

globular multigraphs GlobGraph. We refer to maps in £ as cofibrations and maps
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in R as acyclic fibrations. A map of globular multigraphs f : X — Y is an acyclic

fibration when, for any generic type or term U, each commutative square

U — X
~
LUl l}F
U——Y
has a filler. A map of globular multigraphs ¢ : Z — W is a cofibration when for each

acyclic fibration F : X — Y, each commutative square

07 ——

W —Y

has a filler.

Proposition 5.3.0.2. A map of globular multigraphs is a cofibration exactly when it

18 a monomorphism.

Proof. Since G* is a direct category, it is skeletal and has no non-trivial automor-

phisms. The result now follows from [15, Proposition 8.1.37]. O

Remark 5.3.0.3. A similar argument works for maps of globular multigraphs with
a reflexive globular set of types. Suppose that H?ﬁ is the generic k-transfor between

m-shaped k-terms. Then it follows that the boundary inclusion of Hfﬁ is a cofibration.

This weak factorisation system can be transferred to other categories of interest
using the adjunctions induced by various forgetful functors. We have the following

commutative diagram of forgetful functors:

GlobMulty
1
GlobMult},”
1
GlobMult}

\ -
GlobMult GlobGraph

GlobGraph
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Each of these forgets essentially algebraic data and so has a left adjoint. Let U : C —
D be one of these forgetful functors, and let F': D — C be its left adjoint. Then the

weak factorisation system of cofibrations and acyclic fibrations in C is generated by
Fuy: FOU «— FU

for each generating cofibration in ¢, in C. A morphism f : X — Y in C is an acyclic
fibration exactly when U f is an acyclic fibration in D. Moreover, the left adjoint F

preserves cofibrations.

Example 5.3.0.4. Suppose that X and Y are globular operads. Then every homo-
morphism of globular operads is bijective on types and so the lifting conditions for
generic types are always satisfied. It follows that a homomorphism F : X — Y is an
acyclic fibration if and only if it satisfies the lifting conditions for generic terms. The
canonical map

X %1

to the terminal operad is an acyclic fibration exactly when X is a normalised con-

tractible globular operad. This follows from the observations of Garner in [22].

We now give a useful alternative description of acyclic fibrations. Intuitively,
this description says that the term-lifting properties of acyclic fibrations are satisfied
exactly when, on terms, a homomorphism is strictly surjective and weakly reflects

identities.

Definition 5.3.0.5. Let F : X — Y be a homomorphism of globular multicategories
with pre-homomorphism types. We say that I weakly reflects identities of terms if, for
all parallel terms v,v’ : ' — A in X such that F(v) = F(v'), we have a transformation
¢ v — v such that F(¢) = F(v);t4. In this case, we say that ¢ is an identification.
We say that F strictly reflects identities when all the corresponding identifications

can be chosen to be identity transformations.

Proposition 5.3.0.6. A homomorphism of globular multicategories with pre-homomorphism

types F : X — Y is an acyclic fibration iof and only if all the following conditions hold:

(i) The homomorphism F has the right lifting property against the boundary-inclusions
of types.

(i) The homomorphism F is surjective on terms.

(11i) The homomorphism F weakly reflects identities of terms.

163



Proof. First suppose that F is an acyclic fibration. Then (i) follows trivially. For
each generic type (or term) U, the unique map () — U is a cofibration. The lifting
property of F with respect to this map tells us that F is surjective on types or terms
with the same shape as U. This proves (ii).

Now suppose that v,v" : I' — A are m-shaped parallel n-terms in X and that F(v) =
F(v'). Then, v and v’ together correspond to a homomorphism [v,v'] : 1% — X.

Furthermore, we have the following commutative square:

[v,v']

ot 0 X
X

aﬂ?f”l lIE‘
TH~ . ,
7T F(v)jta

Since [F is an acyclic fibration, this square has a filler. This filler defines the transfor-
mation v — v’ required by (iii).
Now suppose on the other hand that we have (i), (ii), and (iii). Let I? be the

generic w-shaped n-term, and fix a commutative square:

o %, X

) F

Suppose that v i §v + tv. By (ii), there is a m-shaped n-term w in X such that
F(w) = v. Tt follows that F(sw) = sv = F(50) and F(tw) = tv = F(tv). Hence, by
(iii) there are transformations ¢ : 50 — sw and 1 : tw — tv such that F(¢) = sw;r

and F(v) = tw;t. We define
b= owoy

By construction 0v = ov. Furthermore, homomorphisms of globular multicategories
with pre-homomorphism types preserve — o —, and so F(9) = F(w) = v. Hence, 0

defines the required filler, and so F is an acyclic fibration. n
5.4 Weak Higher Categories from Fibrational Ho-
momorphism Types

Acyclic fibrations allows us to weaken the theories described by globular multicate-
gory. Suppose that X is a globular multicategory, and that that Y — X is an acyclic

fibration. Then we can think of Y as a weakening of X. Suppose, for example, that

164



X and Y are operads, and that X = 1 is the terminal globular operad, the theory
of strict w-categories. By Example 5.3.0.4, Y is contractible, and so, in a sense,
parameterises a theory of weak w-categories.

Consider the following diagram of adjunctions whose right adjoints are forgetful

functors:
L’I}:{ib S

ClobMult | GlobMult}® 1 GlobMulty

\_/\/

Uk U
We refer to the left-hand adjunction as the strictification adjunction. Its left adjoint
S adds identities of the form J,(t,; f) = f to globular multicategories with fibrational
homomorphism types. Let 7 :id = US be the unit of this adjunction. The following
result allows us to view structures in globular multicategories with fibrational homo-
morphism types as weakenings of structures in globular multicategories with strict

homomorphism types.

Theorem 5.4.0.1. Giwen any globular multicategory X, the strictification unit

LEPX
lﬁ(LqFjbX)
USLEPX

UL, X
1s an acyclic fibration.

In order to prove this theorem, we first need to introduce a new notion.

Definition 5.4.0.2. We say that a context is reduced when there does not exist a
homomorphism type H,; in I'. Each context I' induces a reduced context I', such
that

['=T, & Hp, O, - Dy Hp,

for some sequence of variables x; : By,...,2; : B;. We say that a term is reduced
when its source context is reduced. Composing with reflexivity terms, it follows that
every term f : I' — A induces a canonical reduced term f, such that tg ;f = f,.
The laws defining homomorphism types in a globular multicategory with fibrational

homomorphism types ensure that f, is well-defined.
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Proposition 5.4.0.3. Suppose that F' : X — Y is a homomorphism of globular
multicategories with homomorphism types, and that the homomorphism types of Y
are strict. Suppose that f, f': T' — A are parallel terms in X such that F(f) = F(f").
Suppose that we have a transformation ¢, : f, — f) such that F(¢,) = F(f,);ta.
Then there exists a transformation ¢ : f — f' in X such that F(¢) = F(f);ta and

ts,; ¢ = ¢,. Furthermore, when X has strict homomorphisms, we have that ¢ = f;t4.

Proof. We have that I' = I'), ©,, Hp, @z, - -+ By, Hp, for some sequence of variables

xy1: By,...,x;: B;. Hence, since F' has strict homomorphism types, we have that
F(f)iva =Ju - Ja(F(f));ta
=Juo T (F(f2))5ta
= 311 o '3901 (F(fl/>;tA)
- 3561 o '3331 (F(¢V>)

Hence, repeatedly applying J-rules, we obtain a term

Qb - 3@ t '3:171 (d)y)

in X such that ¢ = F(f);t4 as required. The “furthermore” part follows immediately.
O

Proof of Theorem 5.4.0.1. Tt is easily seen that n(LyX) is surjective on types and
terms. Hence, it suffices to show that it weakly reflects identifications. A straightfor-
ward induction shows that each reduced term in Ly X is of the form 1y (X)(g);r, for a
unique term ¢ in X and a unique composite reflexivity term r : A — H¥A. Similarly,
each reduced term in L, X is of the form n,,(X)(g); r for a unique choice of a g and .
Furthermore, the homomorphism 7(LyX) sends 1y (X)(g);r to 1,,(X)(g);r. Hence,
since 7, (X) is injective on terms, the homomorphism 7(LyX) is injective on reduced

terms. The result now follows from Proposition 5.4.0.3. O

Remark 5.4.0.4. The constructed acyclic fibration is easily seen to be bijective on
0-terms. This is an analogue of the normalisation condition which is frequently placed

on globular operads.

Example 5.4.0.5. By Example 5.2.0.2, we have that LTy = 1, the terminal globu-
lar operad. Thus, in this case, Theorem 5.4.0.1 tells us that L¥"Ty is a contractible
globular operad. Remark 5.4.0.4 tells us that this operad is normalised. It follows
that every 0-type in a globular multicategory with fibrational homomorphism has the

structure of a weak w-category.
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Example 5.4.0.6. By, Example 5.2.0.4, the theory of strict w-functors is LyI.

Hence, LY can be seen as a theory of weak w-functors. Every O-term in a glob-

ular multicategory with fibrational homomorphism types is a weak w-functor in this

sense.

Example 5.4.0.7. By Example 5.2.0.3, the theory of strict w-profunctors is LyT;.
Hence, LEPT; can be seen as a theory of weak w-profunctors. Every 1-type in a
globular multicategory with fibrational homomorphism types is a weak w-profunctor

in this sense.

Example 5.4.0.8. Analogous to the strict case, the higher categorical structures on

types endow globular sets of terms
[ — M, g —h]

with the structure of a weak higher category.

Since these results all hinge on Theorem 5.4.0.1, the following conjecture would
allow us to prove similar results about globular multicategory with weak homomor-

phism types:
Conjecture 5.4.0.9. Given any globular multicategory X, the strictification unit
LYkX
ln(L%VkX)
USLY*X

UL, X

1s an acyclic fibration.
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