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Abstract

We introduce various notions of globular multicategory with homomor-

phism types. We develop a higher dimensional modules construction that

constructs globular multicategories with strict homomorphism types. We

illustrate how this construction is related to iterated enrichment. We

show how various collections of “higher category-like” objects give rise to

globular multicategories with homomorphism types. We show how these

structures suggest a new globular approach to the semantics of (directed)

homotopy type theory.
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Chapter 1

Introduction

There are a great variety of approaches to defining a theory of weak higher categories

(see for instance [32]). A topological approach using tools of abstract homotopy theory

has enjoyed great popularity in recent years, and has led to impressive results in a

plethora of fields, ranging from geometry and topology to algebra, logic and type

theory. Nonetheless, this approach is not without its limitations: low-dimensional

notions of higher category, the formal theory of ∞-groupoids described by homotopy

type theory, and the intuitive, informal higher category theory used in practice, are

arguably globular as opposed to simplicial, and tend to be based on explicit operations

as opposed to implicit operations, which are merely required to exist because of

filling conditions. The algebraic approach to higher category theory based on globular

operads addresses these issues but there are large gaps in this area, and key notions

which have yet to be defined. Consequently, while one can typically take a result

of 1-category theory, and then adapt it in order to obtain a result about topological

(∞, 1)-categories, this is not currently possible for algebraic higher categories. This

thesis aims to build a bridge connecting algebraic and topological models of higher

category, as well as approaches based on type theory. In developing this framework,

we present the beginnings of a semantics for directed homotopy type theory, and we

generalize the Batanin-Leinster definition of algebraic higher categories to a definition

of higher functors, modules, and transformations.

Our central objects of study are a many-objects generalization of globular oper-

ads that we refer to as globular multicategories. A guiding intuition is that a globular

multicategory can be seen as a theory of higher categories. A typical globular multi-

category comes with “higher category-like” objects, together with modules between

these objects, and arrows between modules. Our hope is that globular multicategories

will prove to be a useful tool in model-independent formal higher category theory, and

we believe that all these data are fundamental for this purpose.
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1.1 Overview

We are motivated by two related questions:

1. How can we organize the data needed to reason about higher categories?

2. How can we compare different models of higher category theory?

These questions are closely related since any comparison between different models

inevitably organizes the data of these models in some way. Furthermore, we tend

to need more and more data about each model, in order to make more and more

thorough comparisons. This chapter introduces these questions, and covers two im-

portant approaches to higher category theory. We discuss how each of these questions

motivates the study of globular multicategories.

1.2 Background

1.2.1 Formal Higher Category Theory

Category theory provides an abstract framework in which to study much of “set-

based” mathematics. Familiar constructions such as products and quotients can be

characterized via universal properties which determine these notions up to isomor-

phism. Once a definition has been phrased in such a manner, it is then straightforward

to examine models based on categories other than Set. Indeed, topos theory allows

one to study the very notion of “set” category-theoretically. Thus, category theory

provides a language to describe constructions in “set-based” mathematics.

However, category theory itself exhibits structure which cannot be described well

using just this language. For example, the notions of equivalence, adjunction and

monad all involve natural transformations, the 2-cells of the 2-category of categories.

Formal category theory aims to describe an abstract language for doing category

theory. This language should be abstract enough to reason about “category-like”

structures beyond just ordinary categories. For example, many key theorems about

categories have analogues about enriched categories and internal categories. We would

like all the different versions of each theorem to be instances of a single more general

theorem when stated in the right way.

At first, it might seem that these goals can be achieved by reasoning inside a 2-

category. Much can be done in this setting. See for example the description of monads

and their algebras in [50]. However, some problems, such as describing pointwise Kan
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extensions, depend on a notion of representability which cannot be described using

just the data of a 2-category. In order to talk about representability a notion of

profunctor is needed. (In the case of standard categories, profunctors are functors of

the form Aop ×B → Set.) Frameworks for formal category theory include:

� Yoneda Structures (see [52]) : These equip a 2-category with internal Yoneda

embeddings.

� Proarrow Equipments (see [58, 59]) : These describe the key properties of the

canonical 2-functor Cat → Prof sending f 7→ Hom(id, f). These can also be

viewed as double categories with extra structure relating vertical cells (“func-

tors”) to horizontal cells (“profunctors”) (see [48]).

� Virtual Equipments (see [17]): These generalize proarrow equipments by drop-

ping the requirement that profunctors be composable. Typically, the composite

of two profunctors F and G will be a coend in the following sort of form.∫ x

F (−, x)⊗G(x,−)

Virtual equipments can be used to reason about situations where these colimits

need not exist or behave well. For example, enrichment in (not necessarily co-

complete) monoidal categories works perfectly well in this setting. Furthermore,

virtual equipments allow a number of results to be stated without technical con-

ditions (see [17]).

Finally, if we start with a 2-category with sufficient structure, then we should be

able to construct one of these settings for formal category theory. For example, it is

shown in [57] that given a 2-topos (a 2-category which behaves like the 2-category of

categories), there is an associated Yoneda structure.

Of course, 3-categories such as the 3-category of 2-categories contain extra struc-

ture that necessitates an even more expressive language. Hence, we expect the search

for a good language for higher categorical mathematics to continue into higher di-

mensions. Ultimately, we would like to have a language for n-categories for all n ≤ ω.

However, as n increases, the amount of data involved in definitions tends to increase

rapidly.

We will see in this thesis that various collections of “higher category-like” objects

can be organized into globular multicategories. Moreover, these globular multicat-

egories frequently come with the extra structure of homomorphism types. Since

globular multicategories are a categorification of virtual double categories, it seems
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reasonable to think that they will provide a natural environment in which to study

formal higher category theory.

1.2.2 Topological Higher Categories

Recently a family of models of higher categories which we will refer to as topological

higher categories has become popular. Given a topological space, we would like there

to be an associated fundamental ∞-groupoid of points, paths, homotopies, homo-

topies between homotopies, etc. In fact, it is considered desirable that this fundamen-

tal ∞-groupoid functor be an equivalence of (∞, 1)-categories between topological

spaces (up to weak homotopy equivalence) and ∞-groupoids. This is the homo-

topy hypothesis. This correspondence suggests that we could define ∞-groupoids to

be topological spaces and study them in an equivalence-invariant way using tools

from homotopy theory. Simplicial sets provide a well-known combinatorial model of

topological spaces. Hence, we identify ∞-groupoids with simplicial sets (up to weak

homotopy equivalence), or more specifically with Kan complexes, the fibrant objects

in the standard Kan-Quillen model structure on simplicial sets.

Definition 1.2.2.1. Given an n-simplex ∆, a horn Λ is a simplicial set obtained by

discarding an (n-1) cell from the boundary ∂∆. A Kan complex is a simplicial set

such that for each horn inclusion Λ ↪→ ∆, every commutative diagram

Λ X

∆ 1

has a filler.

The filling conditions can be thought of as describing both the composition and

the inverses of simplicial cells. For example, a composite of two 1-cells f and g

corresponds to a filler of the following form:

• •

•

g

f
gf

Building on these observations we are led to a number of (equivalent) models of

(∞,1)-category including:
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� Categories enriched in simplicial sets (see for instance [11])

� Quasicategories (see for instance [35]): these are just simplicial sets with slightly

fewer filling conditions than Kan complexes so that we can have non-invertible

1-cells.

� Complete Segal Spaces (see for instance [38]): these are intuitively categories

internal to simplicial sets whose two notions of equivalence (coming from the

category structure and the simplicial set of 0-cells) agree.

There are a number of ways of building on these topological models to obtain

categories of (∞, n)-categories for n ≥ 1. The resulting quasicategories of (∞, n)-
categories are all equivalent and are characterized by a few simple axioms in [5].

Importantly, key notions in 1-category theory have been transported to study

topological (∞, 1)-categories (see [35]). As a result, a useful theory of (∞, 1)-categories
has been developed. Riehl and Verity have developed category theory in a model-

independent manner using certain structured simplicially-enriched categories known

as∞-cosmoi (see [41–46]). Their approach allows results such as the Yoneda Lemma

to be proved for a large class of models, including topological (∞, n)-categories. Fur-
thermore, they show that much can be done by studying an associated virtual equip-

ments of modules.

Another particularly simple model in this family is given by relative categories.

Definition 1.2.2.2 ( [4]). A relative category is a category C together with a sub-

category W of weak equivalences such that W contains all the objects of C.

Given a relative category (C,W), there exists a localization C[W−1]. This is the

(∞, 1)-category obtained from C by inverting (in a weak sense) the morphisms of

W . In fact, (∞, 1)-categories can be identified with relative categories in this way

(see [4]). Notably, many important categories in algebraic topology and homological

algebra come equipped with natural notions of weak equivalences. Examples include:

� weak homotopy equivalences between topological spaces,

� quasi-isomorphisms between chain complexes.

Frequently, relative categories underlie more structured categories such as model

categories. These come with notions of fibration and/or cofibration that can be

thought of as inclusions and projections which interact well with weak equivalences.

5



Whilst in some sense the weak equivalences are all that is needed in order to deter-

mine the relevant higher category, this extra structure is often useful for equivalence-

invariant computation. Homotopical models of intentional type theory can be seen as

an embodiment of this idea. (See for example [49].) From this perspective, fibrations

can be seen as display maps which tell us how to model dependent types. A key

feature of such models is that diagonal maps have factorizations

A AI A× A

where the right-hand arrow is a fibration. If the object A is seen as a type in a type

theory, then the path space object AI models the identity type of A. In this way, we

can obtain a model of dependent type theory with intensional identity types from any

“sufficiently nice” (∞, 1)-category. Awodey and Warren first made this connection

in [3]. Thus, homotopy type theory provides a synthetic language for reasoning in

an equivalence-invariant fashion about ∞-groupoid-like objects (see [53]). Moreover,

a guiding intuition is that there should be a higher adjunction between a suitable

category of homotopy type theories and a category of nice (∞, 1)-categories. Much

work has been done in this direction, although some work still remains. (See for

example [27] and [28].) A recent approach to extending homotopy type theory for

reasoning about more general (∞, n)-categories is [40].
Conceptually, the ∞-groupoids described by homotopy type theory are quite dif-

ferent from the topological models of higher categories. The tower of identity types

gives types a globular structure. However, topological models tend to be simplicial.

For example, a common way to describe the Hom object of a quasi-category is to

change model, view it as a simplicially-enriched category, and then look at the cor-

responding simplicial set of 1-cells. Thus, fundamental operations of homotopy type

theory and of the informal reasoning that people use in practice to reason about

higher categories are arguably not captured very well by topological models.

In this thesis, we will show that models of dependent type theory with identity

types induce globular multicategories with homomorphism types. Thus, our results

can be seen as a first step towards a globular semantics for homotopy type theory. We

show how this framework suggests directed generalizations of more familiar models

of dependent type theory.

1.2.3 Algebraic Higher Categories

A different class of models of higher category, the globular models of higher category in

the style of Batanin, can be constructed quite directly from intensional type theories.
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(See [6] for Batanin’s original definition of higher categories using globular operads,

and see [30] for a popular variation due to Leinster. For constructions of these globular

models starting from an intensional type theory, see [34, 54].) We build on these

results by describing methods to construct algebraic higher categories given a globular

multicategory with homomorphism types.

Algebraic models consist of operations sending pasting diagrams to cells. Since

these operations are specified explicitly, we call these models algebraic. This seems

to be a good match for the constructive style of type theory, which asks for proof

witnesses. Indeed, Finster and Mimram [21] have shown how an algebraic notion

of weak ω-category in this family of models can be described using a type-theoretic

calculus. Another key feature of these models is that they are inherently directed :

an ω-groupoid is just a ω-category whose n-cells are equivalences for n ≥ 1. Thus,

algebraic higher categories seem much closer in spirit to the usual low-dimensional

notions of higher category, as well as informal notions of higher category.

However, the usefulness of these models is severely limited by the lack of def-

initions of key notions. For example, it remains an open problem to describe the

weak ω-category of weak ω-categories in this setting, or even to describe a notion of

composition along k-cells for k > 0. (See [23] for one proposed definition of k-cells

(higher transformations) and composition along 0-cells.) We discuss how the theory

of globular multicategories suggests another possible family of definitions for these

objects.

1.3 Summary of this Thesis

Chapter 2 provides a detailed introduction to globular multicategories, and introduces

the fundamental notions and notations that permeate this thesis. We provide an

introduction to the basic structures on which the notion of globular multicategory

depends: pasting diagrams, and the free strict ω-category monad. We then define

globular multicategories themselves. The presented definition is not new but our

choice of notation is novel. We adopt type-theoretic terminology for the data in each

globular multicategory; we believe that this approach greatly facilitates reasoning

about these data. We then assemble a collection of examples and constructions, both

novel and previously known, that undergirds and illustrates the remaining chapters.

The Hom-profunctor plays a fundamental role in category theory, and higher di-

mensional generalizations are needed to reason about higher categories. Chapter 3

describes how a globular multicategory can be equipped with strict homomorphism
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types that play this role. We show how various sorts of strict n-categories can be

organized into globular multicategories with strict homomorphism types. Finally, we

introduce a higher dimensional modules construction that constructs globular mul-

ticategories with strict homomorphism types, and we show how this construction is

intimately linked to iterated strict enrichment.

Many interesting higher dimensional examples do not satisfy the identities re-

quired for the construction of strict homomorphism types, although they do satisfy

these identities up to a suitable notion of equivalence. In order to solve this problem,

Chapter 4 introduces two weak variants of homomorphism types in a globular mul-

ticategory; fibrational homomorphism types behave like a directed version of identity

types in a type theory, while weak homomorphism types behave like directed path

types (propositional identity types) in a type theory. We show how type theories

with identity types (or path types) induce corresponding globular multicategories

with fibrational (or weak) homomorphism types. In fact, our results rely on two-

sided notions of factorization, generalizing the familiar one-dimensional factorization

systems that provide semantics of undirected homotopy type theories. In this way,

we believe that globular multicategories with fibrational (or weak) homomorphism

types provide a natural environment for the study of the semantics of future directed

homotopy type theories.

The previous chapters show how various higher categorical structures induce glob-

ular multicategories with homomorphism types. Chapter 5 contains results in the

other direction: given a globular multicategory with homomorphism types, we con-

struct higher categorical objects.

1.4 Summary of Contributions

Here we highlight the contributions of this thesis.

Chapter 2 introduces the vertical construction, and the families construction for

globular multicategories. It describes a universal property for families constructions.

We also introduce a novel type-theoretic notation here, which simplifies previously

known notions. For example, using this notation, the defining property of the 2-cells

of GlobMult closely resembles the usual notion of natural transformation.

Chapter 3 is almost entirely novel. We introduce strict homomorphism types,

and construct a number of examples. We construct level-wise strict higher modules

functors and prove their universal properties. We then use these level-wise functors
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to construct more complicated higher modules functors. We show how iterated en-

richment can be understood as the result of applying a families construction and

then a modules construction. In particular, this implies that the globular multicate-

gory of modules in SpanSet can be seen as the collection of strict ω-categories, strict

profunctors between them, and strict transformations between these objects.

Chapter 4 is also almost entirely novel. We introduce globular multicategories

with pre-homomorphism types, fibrational homomorphism types, and weak homo-

morphism types. We show how these definitions are all characterized by certain

representing properties of reflexivity substitutions. We give new notions of category

with pre-homomorphism types, fibrational homomorphism types, and weak homomor-

phism types. We show how these notions generalize categories with identity types

and path types.

Chapter 5 is a straightforward application of the new tools developed in the pre-

vious chapters. We discuss how the data of categories with strict and fibrational

homomorphism types can be equipped with higher categorical structure.

Combining these results, we significantly develop the theory of globular multi-

categories. We obtain new constructions of algebraic higher categorical structures

from topological higher categories, and we do this in a manner that suggests a new

approach to the semantics of dependent type theory with (directed) identity types.

1.5 Related Work

Here we highlight the most significant influences of this work, as well as some closely

related ideas in the literature.

One-dimensional globular multicategories are virtual double categories. This case

is by far the best understood case in the literature and is thoroughly developed

in [17]. This case, while far simpler and more familiar than the general case, is

already sufficiently rich to illuminate many of the key constructions and definitions

of this thesis. In fact, many of our new results can be viewed as higher dimensional

generalizations of results about virtual double categories. In particular, the monoids

and modules construction on virtual double categories is the one-dimensional version

of the higher modules construction introduced in this thesis. This construction was

first introduced by Leinster [31], and a universal property is described in [17].

The idea of equipping globular multicategories with homomorphism types is al-

most present in [54]. Here, monoidal globular categories play an intermediate step

in the construction of ω-groupoids from dependent type theories with identity types.
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This approach to the semantics of type theory greatly influenced Chapter 4. Many

of our results on type theories are also closely related to results of Lumsdaine [34],

although our focus is more on the algebraic structures giving type theories semantics,

than on syntactic constructions.

Our approach to algebraic higher categorical structures builds on Batanin and

Leinster’s approach to higher categories [6, 30] as well as Garner’s homotopical in-

terpretation of Leinster’s approach [22]. The weak notions of higher functor that we

propose are closely related to the coherence results for functors between 2-categories

and 3-categories described by Gurski [24].

The idea of weakening higher transformations using generalized operads and al-

gebraic contractions has been studied independently by Kachour [25, 26]. Kachour’s

work on this topic has gone through numerous revisions, and various similar ap-

proaches are described.

Notably absent in this thesis is a comparison with the ∞-cosmoi of Riehl and

Verity (see [41–46]). Given that they construct virtual equipments of modules, this

seems like a promising future direction.

1.6 Future Work

Another goal for future work is to clarify the type-theoretic nature of globular mul-

ticategories. Each globular multicategory should induce a model of dependent type

theory in the form of a category with families (see [19]), or equivalently a natural

model of type theory (see [2]). There should be a close correspondence between

the types, terms, contexts, etc. of a globular multicategory and the synonymous ob-

jects in the associated category with families. Hence, this approach could give a

precise justification for the type-theoretic terminology used throughout this thesis.

Moreover, results about globular multicategories could be effectively translated into

results about dependent type theories and vice versa. For example, when a globular

multicategory is representable, the corresponding type theory should support certain

Σ-types; when a globular multicategory has homomorphism types, the correspond-

ing type theory should support identity types. It would be very interesting to study

the analogue of type-theoretic universes in the setting of globular multicategories.

Since the objects of globular multicategories with homomorphism types behave like

collections of higher categories, homomorphism types of the universe could provide a

great deal of information about the globular multicategory of all categories and the

globular multicategory of all globular multicategories.
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Chapter 2

Globular Multicategories

In this chapter, we introduce our central objects of study: globular multicategories. A

globular multicategory amounts to a globular set of types, together with composable

collections of terms ; terms are arrows sending pasting diagrams of types to other

types. Our first goal is to make this definition precise. We then introduce a variety of

examples and constructions that we will use in later chapters. Much of this material

can already be found throughout the literature. Here we organise this material, and

supplement it with a handful of new results.

2.1 Preliminary Notions

In this section, we lay the groundwork for the definition of globular multicategories.

We provide a self-contained introduction to the categories of globes, globular sets,

and pasting diagrams. Finally, we examine how the free strict ω-category monad T

can be succinctly described using pasting diagrams.

2.1.1 Globes

We first examine what is meant by the term globular. In general, a globular object

is parametrised by the category of globes, whose objects are points, arrows, arrows

between arrows, etc.

Definition 2.1.1.1. The category of globes, G = Gω, is freely generated by the

morphisms

0 1 · · · k · · ·
σ0,1

τ0,1

σ1,2

τ1,2

σk−1,k

τk−1,k

σk,k+1

τk,k+1

subject to the globularity conditions :

σk+1,k+2 ◦ σk,k+1 = τk+1,k+2 ◦ σk,k+1,

σk+1,k+2 ◦ τk,k+1 = τk+1,k+2 ◦ τk,k+1.
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For each n, we refer to the object n as the n-globe. We depict the 0-globe by a point,

and for n > 0, we depict the n-globe as an arrow between (n− 1)-globes. Thus, the

0-globe, 1-globe, 2-globe and 3-globe are depicted as follows:

• • • • • • •

The morphisms of the globe category can be seen picking out the sources and targets

of these arrows. The globularity condition then says that “the source of the source

is the source of the target” and “the target of the source is the target of the target”.

It follows that for each k < n, there are exactly two arrows k → n in G. We denote

these arrows, which factor through σk,k+1 and τk,k+1 respectively, by

σk,n : k −→ n, τk,n : k −→ n.

Note that n is typically clear from the context, and so we also write σk, τk : k → n. We

define Gn to be the full subcategory of G on the objects 0, . . . , n. For each 0 ≤ n ≤ ω,

an n-globular object in a category C is a functor A : Gop
n → C. We denote the image

of σk, τk : k → n under such a functor by

A(n) A(k),
sk

tk

and refer to these morphisms as the k-source and k-target morphisms. We will also

write s, t for the arrows sl−1, tl−1 : A(l) → A(l − 1) respectively, and refer to these

maps as the source and target morphisms respectively.

Definition 2.1.1.2. An n-globular object in Set is called an n-globular set, while an

n-globular object in Cat is called an n-globular category. In these cases, we refer to

the elements of A(k) as k-cells. We depict k-cells by labelled k-globes. Thus, the

representable globular sets corresponding to the 0, 1 and 2-globe could be depicted

as follows:

A A B
f

A B

f

g

ϕ A B

f

g

ϕ ψ
θ

The following diagrams depict more complicated examples of globular sets:

A B

f

g

g
ϕ

ψ

D

A B C

m

f

g

h

i

j

k
l

ϕ
ψ
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The source and target maps pick out the sources and targets of the depicted arrows.

For example, in the last two diagrams above, we have that sϕ = f and t0ϕ = B.

We say that two n-cells a, b are parallel when sa = sb and ta = tb. For example,

in the above right diagram the 1-cells i and j are parallel, while i and h are not

parallel. The globularity condition for globular sets amounts to the requirement that

the source and target of any n-cell be parallel.

Remark 2.1.1.3. There are obvious fully faithful inclusions,

G0 G1 · · · Gω.

Let C be any category. Then composition with these inclusions induces truncation

functors

[Gop
0 , C] [Gop

1 , C] · · · [Gop
ω , C]

tr0 tr1

When C = Set, the truncation functor trk forgets all n-cells for n > k. When C has

an initial object, each of these functors has a left adjoint Ltrk . Suppose that k < n,

and that A is a k-globular object in C. Then, we have that

Ltrk(A)(i) =

{
A(i) if i ≤ k

∅ if i > k

This left adjoint is fully faithful, and we frequently identify a k-globular set, A, with

the n-globular set Ltrk(A). Indeed, we will particularly focus on ω-globular sets

since results about ω-globular sets can typically be transformed into results about

n-globular sets for all n by taking truncations. We refer to ω-globular sets simply as

globular sets. We define the dimension of an globular set A by

dimA = max{n | A(n) ̸= ∅}.

For example, each of the examples of globular sets depicted by a diagram above has

dimension at most 3. It follows that a globular set A is in the image of Ltrn(A
′) for

some n-globular set A′ if and only if dimA = n.

2.1.2 Globular Pasting Diagrams

The globular pasting diagrams are an important class of globular sets. Each globular

pasting diagram describes a notion of composition in a higher category. For example,

there is a globular pasting diagram consisting of a pair of composable 1-cells:

A B C
f g

(2.1.2.a)
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This diagram describes the usual notion of composition in a category: whenever we

have arrows f and g as above, there is a canonical composite g ◦ f . On the other

hand, the globular set

A B C
f g

is not a globular pasting diagram, since we do not in general expect such diagrams to

induce any sort of composition in a category. There are a number of equivalent ways

of describing globular pasting diagrams in the literature. See for example [6, 30, 51]

where these objects are called n-stage trees, globular cardinals, and pasting diagrams.

We present two different descriptions here.

On the one hand, the collection of pasting diagrams can be inductively defined,

starting with the globes, and then defining new pasting diagrams by “gluing the target

of one diagram to the source of another”.

Definition 2.1.2.1. For each n ≥ 0, we define the following data:

� A set pdbr(n) whose elements we refer to as bracketed n-pasting diagrams,

� For each π ∈ pdbr(n), a globular set Iπ,

� For each k < n, and each bracketed n-pasting diagram π, a bracketed k-pasting

diagram π∂k together with source and target maps

σπ,k : Iπ∂k −→ Iπ, τπ,k : Iπ∂k −→ Iπ

satisfying globularity conditions:

σπ,j ◦ σπ∂j ,k = σπ,k = τπ,j ◦ σπ∂j ,k,

σπ,j ◦ τπ∂j ,k = τπ,k = τπ,j ◦ τπ∂j ,k.

Firstly, when n = 0, there is a unique bracketed 0-pasting diagram D0 such that

ID0 is the representable 0-globe. Now suppose that n > 0. Then we define the data

simultaneously by induction:

� There is a bracketed n-pasting diagram Dn such that IDn is the representable

n-globe. Whenever k < n, we define (Dn)∂k = Dk, and we define σk and τk to

be the arrows induced by the corresponding arrows in G.

14



� Each bracketed (n−1)-pasting diagram π induces a bracketed n-pasting diagram

π+ such that Iπ+ = Iπ. In this case, we set π+
∂n

= π; we define the boundary

inclusions by

σπ+,k =

{
idIπ if k = n

σπ,k if k < n
τπ+,k =

{
idIπ if k = n

τπ,k if k < n

When there is no danger of ambiguity, we will elide this notation and simply

refer to π+ as π.

� Given bracketed n-pasting diagrams π1, π2 such that (π1)∂k = (π2)∂k = ρ, there

is a bracketed n-pasting diagram denoted π1 ⊙k π2. We define I(π1 ⊙k π2) to

be the following pushout:

Iρ Iπ1

Iπ2 I(π1 ⊙k π2)

τπ1,k

σπ2,k

When j < k we define (π1 ⊙k π2)∂j = ρj, and we define σπ,j, τπ,j to be the

composites

Iρ∂j
σρ,j−−→ Iρ −→ I(π1 ⊙k π2), Iρ∂j

τρ,j−−→ Iρ −→ I(π1 ⊙k π2).

When j = k, we define (π1 ⊙k π2)∂j = (π1)∂j = (π2)∂j = ρ, and we define σj, τj

to be the composites

I(π1)∂j
σπ1,j−−−→ Iπ1 −→ I(π1 ⊙k π2), I(π2)∂j

τπ2,j−−→ Iπ2 −→ I(π1 ⊙k π2)

When j > k, we define (π1 ⊙k π2)∂j = (π1)∂j ⊙k (π2)∂j . The source and target

maps are induced by the universal properties of these pushouts. For example,

by the globularity conditions, we have that σπ2,j ◦ σ(π2)∂j ,k = σπ2,k and σπ1,j ◦
τ(π1)∂j ,k = τπ1,k. Hence, we define σπ1⊙kπ2,j to be the canonical arrow making

the following diagram commute:

Iρ I(π1)∂j Iπ1

I(π2)∂j I(π1)∂j ⊙k I(π2)∂j

Iπ2 Iπ1 ⊙k Iπ2

τ(π1)∂j,k

σ(π2)∂j,k

σπ2,j

σπ1,j

σπ1⊙kπ2,j

These definitions are easily seen to satisfy the globularity conditions.
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We view pdbr(n) as a category by defining an arrow π → ρ in pdbr(n) to be a map

of globular sets Iπ → Iρ. We define pdbr to be the globular set whose n-cells are

bracketed n-pasting diagrams; source and targets are defined so that, for all k,

skπ = tkπ = π∂k .

Given a globular set X, the category of elements el(X) is defined so that:

� An object in el(X) is a pair (n, x), where n ∈ G and x ∈ X(n).

� Suppose that f : m→ n is an arrow in G, and suppose that we have an object

(n, x) ∈ el(X). Let y = X(f)(x). Then, there is an arrow (f, x) : (m, y) →
(n, x) in el(X).

� Composition of arrows in el(X) comes from G.

It follows that there is a functor Ibr : el(pdbr)→ G-Set defined by

Ibr(n, π) = I(π), Ibr(σk, π) = σπ,k, Ibr(τk, π) = τπ,k.

Example 2.1.2.2. The diagram (2.1.2.a) is the result of pasting two 1-cells along a

shared 0-cell; we have the following pushout diagram:

A B

B A B C

B C

f

g

f g

This exhibits diagram (2.1.2.a) as I(D1 ⊙0 D
1).

Example 2.1.2.3. A 2-cell and a 1-cell can be pasted along a shared 0-cell in two

ways:

A B

B A B C

B C

f

i

g

f

g

i

ψ

ψ
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and

A B

B A B C

B C

f

g

f

g

g

g

ϕ

ϕ

The resulting pushouts, denoted I(D1⊙0D
2) and I(D2⊙0D

1), correspond to whisker-

ing operations in a 2-category.

Example 2.1.2.4. Combining the previous two examples, we obtain the following

diagram:

A B C

A B C A B C

A B C

h g

f

g

h f g

h

i

g
ih

ϕ

ψ

ψϕ

The right-hand side is clearly I(D2 ⊙0 D
2). Hence, this pushout diagram tells us

that (D2 ⊙0 D
1)⊙D1 (D1 ⊙0 D

2) ∼= (D2 ⊙0 D
2); this corresponds to the well known

fact that in a 2-category horizontal composition can be defined using a combination

of left-whiskering, right-whiskering and vertical composition.

Example 2.1.2.5. The following diagram depicts the globular set associated to the

3-pasting diagram (D2 ⊙1 (D
3 ⊙1 D

2))⊙0 (D
1 ⊙0 D

2) with labels omitted:

• • • •

Example 2.1.2.6. Familiar laws of composition in higher categories follow from

the commutativity of colimits. For example, for each k < n, we have the following

associativity and unit laws :

π ⊙k Dk ∼= π ∼= Dk ⊙k π, (o⊙k π)⊙k ρ ∼= o⊙k (π ⊙k ρ),

We will henceforth denote the composite π1 ⊙k (π2 ⊙k · · · ⊙k πl) · · · ) by π1 ⊙k π2 ⊙k
· · · ⊙k πl. Commutativity of colimits also implies that, for each i, j < n, we have the

following interchange law :

(π ⊙j π′)⊙i (ρ⊙j ρ′) ∼= (π ⊙i ρ)⊙j (π′ ⊙i ρ′).
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These examples serve to illustrate that bracketed pasting diagrams have an intu-

itive graphical flavour. However, Example 2.1.2.4 exhibits one shortcoming of this

approach: there are non-trivial relations between the operations ⊙0,⊙1, . . ., and this

makes constructions using this definition more involved. For example, it not a priori

clear that the operations ⊙0,⊙1, . . . respect isomorphisms in pdbr(n). Another way

to understand this difficulty is to note that the pushouts involved in the definition

of pdbr(n) implicitly involve computing certain quotients. In contrast, the follow-

ing construction avoids this issue by defining globular pasting diagrams to be simple

inductively defined objects without using any quotients.

Definition 2.1.2.7. Let ⋆ = () be the empty list. For each n ≥ 0, we define the set

pd(n) of n-pasting diagrams by induction on n:

� When n = 0, we define pd(0) = {⋆},

� When n > 0, we define pd(n) to be the set of lists (π1, π2, . . . , πl) such that

l ≥ 0 and πi ∈ pd(n− 1).

We view pd as a globular set by defining, for each π ∈ pd(n),

sπ = ⋆, tπ = ⋆,

when n = 1, and

s(π1, . . . , πl) = (sπ1, . . . , sπl), t(π1, . . . , πl) = (tπ1, . . . , tπl),

when n > 1.

Remark 2.1.2.8. These lists are often viewed as trees. Given an element π in pd(n),

we define a finite tree Trπ of depth at most n, by induction on n as follows:

� When n = 0, we define Tr ⋆ to be the tree with a unique vertex.

� When n > 0, and π = (π1, π2, . . . , πl) ∈ pd(n), we define Trπ to be the tree

whose root has a child πi for each 1 ≤ i ≤ l, such that the subtree whose root

is πi is Trπi.
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For example, the 3-pasting diagram ((⋆, (⋆), ⋆), ⋆, (⋆)) corresponds to the following

tree:
•

• • • •

• • •

•

Example 2.1.2.9. Each n-pasting diagram π can be seen as an (n + 1)-pasting

diagram π+. This amounts to the fact that every tree of depth at most n has depth

at most (n+ 1).

Definition 2.1.2.10. The arrows of pd(n) are defined inductively. When n = 0,

there is a unique arrow id⋆ : ⋆ → ⋆. Suppose that n > 0, and that π = (π1, . . . , πl)

and ρ = (ρ1, . . . , ρm) are elements of pd(m). Then to give an arrow f : π → ρ is to

choose

� A natural number jf ≥ 0 such that jf + l ≤ m. We view this as an embedding

of lists of length l into lists of length m.

� For each 1 ≤ i ≤ l, an arrow fi : πi → ρjf+i in pd(n− 1).

Composition is defined by

jg◦f = jg + jf , f(g◦f)i = gjf+i ◦ fi.

The identity arrows are defined by

jidπ = 0, (idπ)i = idπi .

These data suffice to make pd(n) a category. Suppose that n > 0, and that f : π → ρ

is an arrow of pd(n). We define sf : sπ → sρ and tf : tπ → tρ by induction on n.

When n = 1, we define

sf = tf = id⋆ .

When n > 1, we define
jsf = jf , (sf)i = s(fi),

jtf = jf , (tf)i = t(fi).

It is easily seen that taking sources and targets is functorial and satisfies the globular-

ity condition. Hence, we have equipped pd with the structure of a globular category.
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Example 2.1.2.11. The assignment −+ : pd(n)→ pd(n+ 1) is the objects part of

a functor. Given f : π → ρ, we set

jf+ = 0, (f+)i = fi.

Example 2.1.2.12. Suppose that n > 0, and that π = (π1, . . . , πl) is an n-pasting

diagram. Then, we define source and target inclusions

σπ : π+
∂ −→ π, τπ : π+

∂ −→ π

by induction on n. When n = 1, we define

jσπ = 0, jτπ = l.

This completes the definition in this case, since ⋆+ has length 0. When n > 1, we

define
jσπ = 0, jτπ = 0,

(σπ)i = σπi , (τπ)i = τπi .

It is easily verified that the source and target inclusions satisfy globularity conditions.

Definition 2.1.2.13. We define the suspension functor Σ : pd(n) → pd(n + 1) on

objects by

Σπ = (π),

and on arrows by

jΣf = 1, (Σf)1 = f.

Thus, Σ grows a tree π by adding a new root vertex whose only child is the root of π.

For example, when π is the tree in Remark 2.1.2.8, we have that Σπ is the following

tree:
•

• • • •

• • •

•

•
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Example 2.1.2.14. Suppose that n > 0, and suppose that π1, π2 ∈ pd(n) where

π1 = (π1,1, . . . , π1,l) and π2 = (π2,1, . . . , π2,m). Then we define the n-pasting diagram

π1 ⊙0 π2 by list concatenation:

π1 ⊙0 π2 = (π1,1, . . . , π1,l, π2,1, . . . , π2,m).

Suppose that f : π1 → ρ1 and g : π2 → ρ2 are arrows in pd′(n). Then we define

f ⊙0 g : π1 ⊙0 π2 → ρ1 ⊙0 ρ2 by

jf⊙0g = jf + jg, (f ⊙0 g)i =

{
fi if 1 ≤ i ≤ jf

gi if jg < i ≤ jg

These assignments underlie a functor −⊙0 − : pd(n)× pd(n)→ pd(n).

In order to justify calling the elements of pd(n) pasting diagrams, we will construct

an equivalence between pd(n) and pdbr(n). First, we note that, each of the preceding

two examples corresponds to a natural operation on pdbr(n) in a manner which we

will shortly make precise (see Example 2.1.2.18). The concatenation operator ⊙0 on

pd(n) corresponds to the operation ⊙0 on pdbr which pastes along 0-boundaries. The

functor Σ corresponds to the following suspension construction:

Definition 2.1.2.15 (See [30, §9.3]). For each bracketed n-pasting diagram π ∈
pdbr(n), we define a bracketed (n+1)-pasting diagram Σπ ∈ pdbr(n+1) inductively

as follows:

� We set ΣDn = Dn+1.

� We set Σ(π+) = (Σπ)+.

� We set Σ(π ⊙k π′) = (Σπ)⊙k+1 (Σπ
′).

For each π, the pasting diagram Σπ has two distinct 0-cells ⋆0 and ⋆1. For each n > 0,

an element x of Σπ(n) corresponds exactly to an element x̄ of π(n − 1). Thus, we

define Σ on arrows by

(Σf)(x) = f(x̄), (Σf)(⋆i) = ⋆i.

These assignments underlie a fully faithful functor Σ : pdbr(n)→ pdbr(n+ 1).

Example 2.1.2.16. Suppose that π is the following pasting diagram:

A B C
f

g

h

ϕ
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Then Σπ is the following pasting diagram:

⋆0 ⋆1

A

B

C

g

f

h
ϕ

We now define a comparison functor Φn : pd(n) → pdbr(n) by induction on n.

When n = 0, we define

Φn(⋆) = D0, Φn(id⋆) = idD0 .

Suppose that n > 0. Then we define Φn on objects so that

Φn(π1, . . . , πl) = Σ(Φn−1π1)⊙0 · · · ⊙0 Σ(Φn−1πl). (2.1.2.b)

Suppose that f : π → ρ is an arrow in pd′(n). For each i, let ιi : Σ(Φn−1πi) ↪→ Φnπ

and κi : Σ(Φn−1ρjf+i) ↪→ Φnρ be the canonical inclusions into the colimits defining

Φnπ and Φnρ respectively. We define Φnf : Φnπ → Φnρ to be the canonical map such

that

(Φnf) ◦ ιi = κi ◦ Σ(Φn−1fi).

Example 2.1.2.17. Suppose that π is the pasting diagram of Remark 2.1.2.8. Then

Φn(π) is the bracketed pasting diagram of Example 2.1.2.5.

Example 2.1.2.18. It follows immediately from this definition that

Φn(π ⊙0 ρ) = Φn(π)⊙0 Φn(ρ),

and

Φn(Σπ) = ΣΦn(π).

The map Φn is easily seen to respect sources and targets. We define Φ : pd→ pd′

to be the morphism of globular sets such that Φ(n) = Φn.

In order to prove that Φn is an equivalence, we will show that every pasting

diagram in pd(n) can be written in a form similar to the right-hand side of (2.1.2.b).

Definition 2.1.2.19. Suppose that π is a (bracketed) n-pasting diagram. For each

−1 ≤ k < n, we say that π is k-trivial when there exists a (bracketed) (n − k − 1)-

pasting diagram π̄ ∈ pd(n− k − 1) such that

π = Σk+1π̄.

Note that π̄ is necessarily unique.
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It follows that a bracketed n-pasting diagram is k-trivial when it can built out of

globes of dimension greater than k without pasting along i-boundaries for i ≤ k.

Proposition 2.1.2.20. Let π be a bracketed n-pasting diagram. Then there exists a

unique n-pasting diagram Ψn(π) such that

π ∼= Φn(Ψn(π)).

Proof. We proceed by induction on n. The claim is clear when n = 0 since there

is a unique 0-pasting diagram, namely ⋆, and there is a unique bracketed 0-pasting

diagram, namely D0, and we have that

Φ0(⋆) = D0.

Hence, suppose that n > 0. Then repeatedly applying associativity, unit and inter-

change laws, we have that

π ∼= (π1 ⊙0 (π2 + · · · ⊙0 πl) · · · )

where each πi = Σπ̄i is 0-trivial. Since each πi is 0-trivial, there exists a unique

(n−1)-pasting diagram Ψnπ̄i such that Φn−1(Ψn−1(π̄i)) ∼= π̄i. Thus, Φn(ΣΨn−1(π̄i)) =

ΣΦn−1Ψn−1(π̄i) ∼= πi. Hence, setting

Ψn(π) = (Ψn−1(π̄1), . . . ,Ψ−1(π̄l))

we have that Φn(Ψn(π)) ∼= π.

It remains to prove uniqueness. Hence, suppose that π ∼= Φn(ρ) for some n-

pasting diagram ρ = (ρ1, . . . , ρm). We will show that l = m, and ρi = Ψn−1(π̄i). Each

bracketed pasting diagram o induces a poset Ord0 o whose objects are k-cells of o for

all k ≥ 0, and whose partial order is generated by the relations

s0a ≤ a ≤ t0a,

for each k > 0 and each k-cell a ∈ o(k). This assignment defines the objects part of

a functor

Ord0 : pd
br(n) −→ Poset .

Given o ∈ pdbr(n), let ht o be the height of the poset Ord0 o; that is, ht o is the

maximum length of a chain in Ord0(o). It is easily seen that htΦn(Ψn(π)) = 2l + 1

and htΦn(ρ) = 2k + 1. Since Φn(Ψn(π)) ∼= π ∼= Φn(ρ) and the height of a poset
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is invariant under isomorphisms, we must have that l = m. For each bracketed n-

pasting diagram o, and each cell a ∈ o(k), let ht a be the height of a as an element

of Ord0 o; that is, ht a is one less than the maximum length of a chain in Ord0(o)

ending in a. Let 1 ≤ i ≤ l. Let oi be the subobject of o such that for each k > 0, we

have that

a ∈ oi(k) ⇐⇒ ht a = 2i− 1.

A 0-cell in oi is the 0-source or 0-targets of one of these k-cells. Then, it follows that

Φn(Ψn(π))i ∼= πi and Φn(ρ)i ∼= ΣΦn−1(ρi). However, since the heights of elements in

a poset are invariant under isomorphism, we must have Φn(ρ)i ∼= Φn(Ψn(π))i. We

now have that

ΣΦn−1(ρi) ∼= Φn(ρ)i ∼= πi ∼= ΣΦn−1Ψn−1(π̄i).

Hence, since Σ is fully faithful, the uniqueness part of the inductive hypothesis implies

that ρi = Ψn−1π̄i. Consequently, we have that ρ = Ψn(π).

Theorem 2.1.2.21. The functor Φn : pd → pdbr(n) of (2.1.2.b) is an equivalence

of categories.

Proof. Proposition 2.1.2.20 implies that Φn is essentially surjective. Since, Φn is easily

seen to be faithful, it remains to show that Φn is full. We will construct an arrow

Ψn(f) : π → ρ such that Φn(Ψn(f)) = f by induction on n.

First, suppose that n = 0. Then, the only arrow in pdbr(0) is idD0 and we have

that Φn(id⋆) = idD0 . Now suppose that n > 0. Suppose that f : Φn(π) → Φn(ρ) is

a morphism in pdbr(n) where π = (π1, . . . , πl) and ρ = (ρ1, . . . , ρm). By definition of

Φn, we have that

Φn(π) = Σπ1 ⊙0 · · · ⊙0 Σπl, Φn(ρ) = Σρ1 ⊙0 · · · ⊙0 Σρm. (†)

For each 0 ≤ i ≤ l, let ⋆i be the unique 0-cell of Φn(π) such that ht ⋆0 = 2i. We

define jΨf to be the unique integer such that

ht(f⋆0) = 2jΨf .

Suppose that 1 ≤ i ≤ l. Then, there must exist a cell a in Φnπ such that s0a = ⋆i−1

and t0a = ⋆i. Hence, fa is a cell in Φnρ such that s0fa = f⋆i−1 and t0fa = f⋆i.

Inspecting the 0-cells in (†), it follows that f⋆i = f ⋆i−1 +2. Hence, we have that

f⋆i = f ⋆0 +2i = 2(jΨf + i). Now, for any cell a in Σπi, we have that

2i− 2 = ht ⋆i−1 ≤ ht a ≤ ht ⋆i = 2i.
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Consequently, since Ord0 f is order preserving, we have that

2(jΨf + i)− 2 = ht(f⋆i−1) ≤ ht(fa) ≤ ht(f⋆i) = 2(jΨf + i).

This implies that fa ∈ ΣρjΨf+i. This allows us to define (Ψf)i by restricting and

co-restricting f . If ιi : Σπi ↪→ π and κi : ΣρjΨf+i ↪→ ρ are the canonical inclusions,

then we define fi : Φn−1πi → Φn−1ρjΨf+i to be the unique map such that

f ◦ ιi = κi ◦ Σfi.

We set (Ψnf)i = Ψn−1fi. Putting this together, we have that Ψnf = (Ψn−1f1, . . . ,Ψn−1fl).

By construction, we have that ΦnΨn(f) = f .

Corollary 2.1.2.22. For each k ≥ 0, every (k − 1)-trivial n-pasting diagram π ∈
pd(n) is of the form

π = π1 ⊙k π2 + · · · ⊙k πl,

for some unique l ≥ 0, and uniquely determined k-trivial πi ∈ pd(n). Here, we use

the convention that the 0-ary sum is the representable Dk.

Proof. Suppose that π is k-trivial. When k = −1, this is Proposition 2.1.2.20. Oth-

erwise, we have that π = Σπ′ for some (k − 1)-trivial π′. The result now follows by

induction.

These results allow us to give a simple inductive description of the cells of each

pasting diagram. First, note that since the unique 0-pasting diagram has a unique

0-cell, every pasting diagram π has a unique 0-cell in its 0-source pasting diagram

s0π. By abuse of notation, we refer to this 0-cell as s0π. Similarly, every pasting

diagram π has a unique target 0-cell, which we denote by t0π. Now suppose that

π = (π1, . . . , πl) is any n-pasting diagram. Thus,

π = Σπ1 ⊙0 · · · ⊙0 Σπl.

Suppose that x is a 0-cell of π. If x = s0π, then we write x = (0). Note that

s0π = s0Σπ1 whenever l > 0. On the other hand, if x ̸= s0π, we must have that

x = t0Σπi for some unique πi. This follows from the fact that each πi has exactly

2 different 0-cells, namely s0πi and t0πi, and that for each 1 ≤ i < l, we have that

t0πi = s0πi+1. In this case, we write x = (i). Thus, there are exactly l distinct 0-cells

in π, which we denote by (0), (1), . . . , (l).

Now suppose that x is a k-cell of π for some k > 0. Then, we must have that

l > 0 and, furthermore, x ∈ πi(k) for some unique i. Let π′
i be the unique pasting

diagram such that πi = Σπ′
i. Then x corresponds to some unique (k− 1)-cell x′ in π′

i.

In this case, we write x = (i, x′).
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Remark 2.1.2.23. From now on, we will not distinguish between pd and pdbr. We

will identify each pasting diagram in pd with its corresponding globular set.

2.1.3 The free strict ω-category monad

Since pasting diagrams parameterise composition in higher categories, they allow us

to give a simple description of the free strict ω-category monad T : G-Set → G-Set.

For any globular setX, an n-cell f of TX consists of an n-pasting diagram π ∈ pd(n),

called the shape of f , together with a map

f : π −→ X.

We refer to these maps as pasting diagrams in X. For each cell i : Dl → π of π, we

denote by fi the composite

l π X.i f

We will also write f = (fi)i∈π in order to emphasise that f amounts to a collection of

cells of X indexed by the cells of π. When n > 0, the source and target of f in TX

are the following π∂n−1-shaped (n− 1)-cells:

sf = f ◦ σπ,n−1, tf = f ◦ τπ,n−1.

In summary, each level of the functor T is a coproduct of representables:

T(−)(n) =
∐

π∈pd(n)

G-Set(π,−)

Thus, T is familially representable in the sense of [12, 30]. In particular, when ⊤ is

the terminal globular set, we have that T⊤ = pd.

Suppose that f, g ∈ TX(n) are n-pasting diagrams in X such that tkf = skg.

Then we have corresponding pasting diagrams

f : π1 −→ X, g : π2 −→ X,

such that f ◦ τπ1,k = g ◦ σπ2,k. We define f ⊙k g to be the induced map

π1 ⊙k π2 −→ X.

Then, f⊙kg defines another element of TX(n). More generally, suppose that we have

a pasting diagram Γ : ρ → TX sending each i ∈ ρ to a πi-shaped diagram Γi in X.

(When ρ = Dn ⊙k Dn, and Γ sends the n-cell of the first component to π1 and sends
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the n-cell of the second component to π2, we recover the preceding example.) Then we

have a corresponding pasting diagram of pasting diagrams, T! ◦ ρ : ρ → T⊤ = pd,

sending each i ∈ ρ to the pasting diagram πi. Hence, taking the colimit of the

composite

el(ρ) el(TX) el(T!) G-Set,
el(Γ) el(T!) I

we obtain a globular set π. Since this colimit can be decomposed into pushouts of the

appropriate form (see Definition 2.1.2.1 above and [56]), we have that π is a pasting

diagram. Let ιi : πi → π be the canonical coprojection from πi into the colimit π.

Suppose that j is a cell in π. Then, there exist cells i in ρ and h in πi such that

ιi(h) = j. Hence, we have a cell Γi(h) in TX. The conditions on the colimit π ensure

that this cell of TX does not depend on the choice of i. These assignments can be

assembled into a diagram π → X, which we denote by:⊙
i∈ρ

Γi.

The multiplication of the monad T sends Γ to
⊙

i∈ρ Γi. Thus, we think of the mul-

tiplication of T as a globular sum. In fact, these colimits are precisely the globular

sums used in the various definitions of∞-category based on Grothendieck’s work and

developed by Maltsiniotis and Ara, amongst others. (See [1, 36].)

Suppose that n ≤ m. Then, for each n-cellM inX, there is a canonicalDn-shaped

m-pasting diagram in X which maps the unique n-cell of Dn to M . We denote this

m-pasting diagram by

[M ] ∈ T(X)(m).

We will often denote this pasting diagram simply by M when there is no ambiguity.

The unit of the monad T is the assignment X → TX which sends each n-cell M

to the n-pasting diagram [M ]. The unit laws say that, for each π-shaped pasting

diagram Γ : π → X, we have that⊙
i∈π

[Γi] = Γ =
⊙
j∈Dn

[Γ]j.

For a more detailed description of the free strict ω-category monad, see [56].

Remark 2.1.3.1. We can give a similar description of the free strict n-category

monad Tn on n-globular sets, by considering pdn instead of pd. For any k ≤ n, the

truncation functor trk : Gn- Set→ Gk- Set induces a morphism of monads Tn → Tk.
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2.2 Definition

A crucial property of the free strict ω-category monad, T, is that it is cartesian; i.e.,

its underlying functor preserves pullbacks and the naturality squares of its unit and

multiplication are pullback squares (see [30]). This allows us to define a notion of

generalised multicategory using Leinster’s theory of T-multicategories (see [30]).

Definition 2.2.0.1. A T-span is a span of n-globular sets of the following form:

X

TA B

We can compose T-spans,

X Y

TA B TB C

a b b′ c

by computing a pullback as in the following diagram

TX ×TB Y

TX Y

T2A TB C

TA

⌟

Ta Tb b′ c

µA

and then composing the left leg with the multiplication µ of T. Let ηX be the unit

of T at X. Then the identity T-span at X is the following diagram:

X

TX X

ηX idX

Putting all these data together, we obtain a bicategory T- Span.

We can use this bicategory to give our main definition succinctly.
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Definition 2.2.0.2. An globular multicategory is a monad in the bicategory T- Span.

Let us now unpack this definition. Each globular multicategory X has an underlying

T-span

X1

TX0 X0

Ctx Ty

for some pair of globular sets X0, X1. We refer to T-spans of this form as globular

multigraphs. We will use type-theoretic terminology to refer to the data contained in

globular multigraphs.

2.2.1 Types

We define TypeX = X0. A k-type is an element of X0(k). When M is a k-type such

that sM = A and tM = B, we denote M by a stroked arrow:

M : A −7→ B.

In low dimensions, we also depict k-types using the notation for globes described in

Section 2.1, except that we use stroked arrows. Hence, going from left to right, the

figure below depicts an unlabelled 0-type, a 1-type M : A→ B, a 2-type O :M → N

where M,N : A 7→ B are 1-types, and a 3-type Q : O 7→ P where O,P : M 7→ N

are 2-types:

• A B
M

A B

N
p

Mp
O A B

Mp

N
p

O P
Q

A π-shaped k-context Γ = (Γi)i∈π is a π-shaped element of TX0(k). That is a map

of the form

Γ : π −→ X0.

We depict contexts as pasting diagrams of types.

Example 2.2.1.1. When π = D1 ⊙0 D
2, and Γ : π → X0 is the π-shaped 2-context

defined by
Γ(0) = A, Γ(1) = B, Γ(2) = C,

Γ(1, 0) =M, Γ(2, 0) = N, Γ(2, 1) = N,

Γ(2, 1, 0) = O,
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we depict Γ as follows:

A B C.Mp
pN

p
N

O (2.2.1.a)

When an n-context Γ contains a k-type D such that k < n and there does not exist

a type E such that sE = D or te = D, we sometimes depict Γ with two copies of the

type D joined by an = sign. Thus, the context Eq. (2.2.1.a) could also be depicted

as:

A B C.

Mp

M
p

pN

p
N

O (2.2.1.b)

A k-variable in a π-shaped context Γ is a k-cell in π. When x a k-variable and A = Γx,

we say that A is the type of x, and write

x : A.

For example, in Eq. (2.2.1.a), we have that (0) : A and (2, 1, 0) : O. We can use

variables to distinguish between different copies of the same type in a context. For

example, in Eq. (2.2.1.a), there are two variables with type N , namely (2, 0) and

(2, 1).

2.2.2 Terms

We define TermX = X1. A k-term f is an element of X1(k). Each term has a context

Ctx f and an output type Ty f . We say that f is π-shaped when Ctx f is π-shaped.

When Ctx f = Γ and Ty f = A, we write

f : Γ −→ A.

Thus, we think of f as a generalised arrow sending a π-shaped k-context Γ (a pasting

diagrams of typed input variables) to an output k-type A. Since TermX is a globular

set, terms also have source and target terms: for each k > 0 and each k-term f : Γ→
A, we have (k − 1)-terms sf : sΓ→ sA and tf : tΓ→ tA. In this case we write

f : sf −7→ tf.

Source and target terms satisfy globularity conditions. We depict terms as vertical

arrows between contexts.
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Example 2.2.2.1. The following diagram depicts a (D1 ⊙0 D
1)-shaped 1-term f :

M ⊙0 N → O, g 7→ h where g : A→ D and h : C → E:

A B C

D E

g

M N

h

P

f

Example 2.2.2.2. The following diagram depicts a (D1 ⊙0 D
2)-shaped 2-term f :

M ⊙0 O → R, sf 7→ tf where sf : M ⊙0 N → Q, s2f 7→ t2f and tf : M ⊙0 N →
P, s2f 7→ t2f :

A

B

D C

E

s2f

t2f

P
p

Mp

Qp

Np

sf
N
p

O

R

tf
f

Whenever, g : sΓ → sA and h : tΓ → tA are terms satisfying sg = sh and tg = th,

we say that g and h are term-wise parallel. In particular, source and target terms

are term-wise parallel: when k > 1, we have that s2f = stf and t2f = tsf . For

any term-wise parallel g, h, we denote the set of terms f such that f : Γ → A and

f : g 7→ h by

[Γ −→ A, g −7→ h].

For any pasting diagram π ∈ pd(k), a π-shaped substitution is a π-shaped element

f = (fi)i∈π =
⊙

i∈π fi of TX1(n). For each i ∈ el(π), we have that

fi : Γi −→ ∆i.

By pasting together the domain contexts of these terms, we obtain a context

Γ =
⊙
i∈π

Γi.

By pasting together the codomain types, we obtain a π-shaped context

∆ =
⊙
i∈π

∆i.

Whenever Γ and ∆ are defined in this way, we write

f : Γ −→ ∆.
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Since variables in a π-shaped context are elements of π, we will frequently index by

contexts rather than pasting diagrams. For example, in this case, we have that

Γ =
⊙
i∈∆

Γi, ∆ =
⊙
i∈∆

∆i, f =
⊙
i∈∆

fi.

For all n > 0, each n-substitution f : Γ → ∆ has source and target (n − 1)-

substitutions sf : sΓ→ s∆ and tf : tΓ→ t∆. As with terms, we write

f : sf −7→ tf.

Source and target substitutions satisfy globularity conditions.

Example 2.2.2.3. Suppose that we have 1-terms ϕ : M ⊙0 N → P, f 7→ g and

ψ : O → Q, g 7→ h. Then there is a (D1 ⊙0 D
1)-shaped 1-substitution ϕ ⊙0 ψ :

M ⊙0 N ⊙0 O → P ⊙0 Q, f 7→ h; we depict this substitution as follows:

A B C D

E F G

Mp Np Op

P
p

hg

Q
p

f
ϕ ψ

2.2.3 Composition of terms

So far we have described the data contained in globular multigraphs, but we now

consider the distinctive feature of globular multicategories: they admit a notion of

composition of terms. Suppose that we have a substitution f : Γ → ∆ and a term

g : ∆ → A in a globular multicategory X. The multiplication of X, qua monad in

T- Span, allows us to define a composite term

f ; g : Γ −→ ∆, sf ; sg −7→ tf ; tg

We think of f ; g as the result of substituting the term fi for the variable i in (the

domain context of) g. We depict composite terms by vertical concatenation.

Example 2.2.3.1. Suppose that f : A → B is a 0-substitution; that is a 0-term.

Suppose that g : B → C is a 0-term. Then we depict the composite f ; g by

A

B

C

f

g
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Example 2.2.3.2. Suppose that ϕ ⊙0 ψ : M ⊙0 N ⊙0 O → P ⊙0 Q, f 7→ g is

the 1-substitution depicted in Example 2.2.2.3. Suppose that we have a 1-term ξ :

P ⊙0 Q→ R, d 7→ e. Then we depict the composite (ϕ⊙0 ψ); ξ as follows:

A B C D

E F G

H I

d e

Mp Np Op

P
p

hg

Q
p

f ϕ ψ

R
p

ξ

We can also compose pairs of substitutions. Suppose that f : Γ→ ∆ and g : ∆→ E

are n-substitutions. Then, we define

f ; g : Γ −→ E

by

f ; g =
⊙
i∈E

(f ; g)i

where, for each variable i ∈ E, we have that

(f ; g)i = (fji)ji∈∆i
; gi.

Example 2.2.3.3. Consider the following diagram:

•

•

• •

•

• •

•

•

•

p

p

p

p
p
p

p

p

p

p

p

p

p
p

p

p

p

d

h

e

f

g

The shape of the 1-term d is D1. The shape of the 2-term e is D2⊙1D
2. The top row

of the picture denotes the (D1 ⊙0 D
2)-shaped substitution d ⊙0 e. The shape of the
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2-term f is D1. The shape of the 2-term g is D2. The shape of the 1-term h is D0.

The bottom row of the picture denotes the (D2 ⊙0 D
2 ⊙0 D

1)-shaped 2-substitution

f ⊙0 g ⊙0 h. The whole picture denotes the composite (d ⊙0 e); (f ⊙0 g ⊙0 h). By

definition, we have that

(d⊙0 e); (f ⊙0 g ⊙0 h) = (d; f)⊙0 (e; g)⊙0 (t0e;h).

Remark 2.2.3.4. As this last example illustrates, it follows from the definition of

−;− that there is an interchange law between −;− and
⊙

. Suppose that f : Γ→ E

and g : E → ∆ are composable n-substitutions. For each x ∈ ∆, let fx =
⊙

y∈Ex
fy.

Then

f =
⊙
y∈E

fy =
⊙
x∈∆

⊙
y∈Ex

fy =
⊙
x∈∆

fx.

Hence, ⊙
x∈∆

fx; gx =
⊙
x∈∆

(⊙
y∈Ex

(fx)y

)
; gx

= f ; g

=

(⊙
x∈∆

fx

)
;

(⊙
x∈∆

gx

)
.

The associativity law of globular multicategories says that for all f : Γ→ ∆, g : ∆→
E and h : E → A, we have that

(f ; g);h = f ; (g;h).

This identity holds both when h is a term and when h is a substitution. We will tend

to omit these brackets when working with −;−.

Example 2.2.3.5. Consider the following diagram:

• • • • • • •

• • • • •

• • • • •

• • •

p p

p

p p p p

p

p

p p

p p

p p

a b d

he f g

c

i j

The whole diagram depicts a composite (D1 ⊙0 D
1)-shaped 1-substitution. Associa-

tivity implies that any two ways of building up this composite from its parts are the

same.
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For each n-type A, the unit of the globular multicategory X, qua monad, induces us

an identity n-term

idA : [A] −→ A, idsA −7→ idtA.

For each n-context Γ, we define the identity n-substitution

idΓ : Γ −→ Γ, idsΓ −7→ idtΓ

by setting (idΓ)i = idΓi
, for each i ∈ Γ. The unit laws of X says that for any n-term

f : Γ→ A,

f ; idA = f = idΓ; f.

Similar equations also hold when f is a substitution.

Example 2.2.3.6. Suppose that ϕ is the following 1-term:

A B C

D E

f

O
p

Mp Np
g

ϕ

Then the unit laws say that

A B C

D E

D E

f

O
p

Mp Np
g

idD idE

O
p

ϕ

idO

=
A B C

D E

f

O
p

Mp Np
g

ϕ
=

A B C

A B C

D E

f

O
p

Mp Np
g

idA

Mp Np
idB idC

ϕ

idM idN

Remark 2.2.3.7. We sometimes depict the arrows of identity terms using vertical =

signs. For example, when M : A → B is a 1-type, the following diagram represents

idM :

A B

A B

Mp

M
p

As another example, given M : A → B as above, a 1-term f : A → M, idA 7→ g

could be depicted as follows:

A A

A Bp
M

gf
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Remark 2.2.3.8. Given a globular multicategory, X, the globular set TypeX can be

made into a globular category by defining an arrow A → B in TypeX(n) to be an

n-term [A]→ B in X.

Remark 2.2.3.9. For consistency of notation, we say that a globular multicategory

X has a unique (−1)-type (or context, term, or substitution) which we denote by ⋆.

Every 0-type (or context, term, or substitution) A satisfies A : ⋆ 7→ ⋆.

Definition 2.2.3.10. Given globular multigraphs X,Y, a map of globular multi-

graphs, F : X → Y, is a pair of arrows, F0, F1, making the following diagram com-

mute:
X1

TX0 X0

Y1

TY0 Y0

Ctx Ty

F1

TF0 F0

Ctx Ty

A homomorphism of globular multicategories is a map of globular multigraphs pre-

serving composition and identities of terms in X; equivalently, homomorphisms pre-

serve the multiplication and unit of X, qua monad.

We denote the category of globular multicategories and homomorphisms by GlobMult.

Most constructions of this thesis can be understood using ordinary 1-category theory.

However, certain constructions are better understood by considering GlobMult to be

a strict 2-category. The following definition describes the 2-cells of this 2-category:

Definition 2.2.3.11. Let F,G : X → Y be homomorphisms of n-globular multicat-

egories. Then, a transformation ϕ : F ⇒ G consists of the following data:

� For each k-type A in X, we require a k-term

ϕA : FA −→ GA, ϕsA −7→ ϕtA.

It follows that, for each context Γ in X, there is an induced substitution

ϕΓ : FΓ −→ GΓ, ϕsΓ −7→ ϕtΓ

defined by (ϕΓ)x = ϕΓx .
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� We require the following naturality condition: whenever f : Γ→ A is a term in

X, we have that

Ff ;ϕA = ϕΓ;Gf.

Remark 2.2.3.12. We can recover the whole 2-category GlobMult using the theory

of generalised multicategories developed in [17].

Remark 2.2.3.13. Replacing the free strict ω-category monad T in these definitions

with the free strict n-category monad Tn, we obtain notions of n-globular multigraph

and n-globular multicategory, for each finite n. For consistency, we will sometimes

refer to plain globular multicategories as ω-globular multicategories. We denote the

(2-)category of n-globular multicategories by n - GlobMult. The truncation functors

of Remark 2.1.1.3 and Remark 2.1.3.1 induce truncation functors

0 - GlobMult 1 - GlobMult · · · ω - GlobMult .
tr0 tr1

These functors have fully faithful left adjoints Ltrk such that

Type(LtrkX)(i) =

{
(TypeX)(i) if i ≤ k

∅ if i > k

Term(LtrkX)(i) =

{
(TermX)(i) if i ≤ k

∅ if i > k

We define the dimension of a globular multicategory by

dimX = dimTypeX.

It follows that dimX = n if and only if there is an n-globular multicategory X′ such

that LtrnX′ = X. We can typically use this observation to obtain results about n-

globular multicategories from results about ω-globular multicategories. Hence, as

with globular sets, we focus on the infinite-dimensional case.

2.3 First Examples

Example 2.3.0.1. A 0-globular multicategory is just a category.

Example 2.3.0.2. A 1-globular multicategory is a virtual double category. A virtual

double category consists of the following data:
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� A category whose objects we call 0-types, and whose arrows we call 0-terms.

We depict 0-terms as vertical arrows:

A

B

� A collection of arrows whose sources and targets are 0-types, which we will refer

to as 1-types. We depict 1-types as barred horizontal arrows such as

A B
M

� A collection of arrows, called 1-terms, sending composable lists of 1-types to

a 1-type. Each 1-term also has a source and target 0-term. A typical 1-term

could be depicted as follows:

A B C

D E

f

M

⇓

N

g

O

A 1-term whose source list has length 0 could be depicted as follows:

A B

C D

f ⇓ g

M

� The 1-terms can be composed vertically; A typical composite could be depicted

as follows:

• • • • • • •

• • • •

• •

⇓ ⇓ ⇓

⇓

This composition is associative, and there are identity 1-terms of the following

form:

A B

A B

⇓ idM

M

M
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This one-dimensional case is thoroughly studied in [17].

Example 2.3.0.3. Every pseudo-double category (with strict vertical composition

and weak horizontal composition) can be viewed as a virtual double category.

Example 2.3.0.4. Suppose that X and Y are virtual double categories underlying

pseudo-double categories. Then a homomorphism X → Y is a lax functor between

the corresponding double categories.

Example 2.3.0.5. Let A and B be parallel n-types in X, for some n < dimX. Then
there is a canonical (dimX− n)-globular multicategory X(A,B) such that:

� A 0-type in X(A,B) is an (n+ 1)-type M : A 7→ B in X.

� A 0-term in X(A,B) is an (n+ 1)-term f : [M ]→ [N ], idA 7→ idB in X.

� When 0 < k ≤ dimX − n, a k-type M of X(A,B) is an (n + k + 1)-type of X
such that snM = A and tnM = B.

� When 0 < k ≤ dimX− n, a π-shaped k-term f is a Σn+1π-shaped (n+ k + 1)-

term in X such that snf = idA and tnf = idB.

The following example, which is essentially contained in [54], motivates our use of

type-theoretic terminology:

Example 2.3.0.6. Every dependent type theory T induces a globular multicategory

GML(T ). We have that:

� A 0-type A in GML(T ) is a type

⊢ A◦ : Type

in T .

� For n > 0, an (n + 1)-type M : A 7→ B in GML(T ) is a dependent type

judgement

x : A◦, y : B◦ ⊢M◦(x, y) : Type

in T .

� Each globular context Γ : sΓ 7→ tΓ in GML(T ) corresponds to a list of dependent
types in T and thus induces a dependent context

x⃗s : sΓ
◦, x⃗t : tΓ

◦ ⊢ Γ◦(x⃗s, x⃗t)

in T .
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� A 0-term in f : Γ→ A in GML(T ) is a term

x⃗ : Γ◦ ⊢ f ◦x⃗ : A◦

in T .

� Suppose that Γ is the (n+1)-context in GML(T ) corresponding to the dependent
context x⃗s : sΓ

◦, x⃗t : tΓ
◦ ⊢ Γ(x⃗s, x⃗t)

◦ in T . Then an (n + 1)-term in f : Γ →
A, sf 7→ tf in GML(T ) is a term

x⃗ : Γ(x⃗s, x⃗t)
◦ ⊢ f ◦x⃗ : A◦((sf)◦(x⃗s), (tf)

◦(x⃗t))

in T .

� It follows that each substitution Γ → ∆ in GML(T ) corresponds to a context

morphism Γ◦ → ∆◦ in T . Hence, composition of terms in GML(T ) is defined

by substitution in T . The unitality and associativity of this composition follow

from the unitality and associativity of the composition of context morphisms in

T .

2.4 The Span Construction

Batanin [6] describes the following class of examples:

Definition 2.4.0.1. Let C be a category with pullbacks. There is a globular multi-

category Span C such that:

� An n-type in Span C is a functor A : el(n)op → C from the category of elements

of the representable globular set n.

� It follows that, given a pasting diagram π ∈ pd(n), a context with shape π in

Span C amounts to a functor

Γ : el(π)op −→ C.

Associated to such a context there is a canonical functor Γ′ : el(n)op → A, which

sends an object of el(n), that is an arrow s : k → n ∈ Gn, to the limit of the

following diagram:

πop
∂k

el(π)op C,el(πs)op Γ

and sends arrows in el(n) to the canonical morphisms induced between these

limits.
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� A term f : Γ→ A in Spann(C) is a natural transformation Γ′ → A.

Remark 2.4.0.2. We refer to functors el(n)op → C as n-spans in C (see [6]). The

globular multicategory Span(C) underlies the monoidal globular category Span(C)
described ibid. A 1-span is a span in the usual sense. More generally, an (n+1)-span

is a “span between n-spans”. For example, a 3-span is a diagram of the following

form:
•

• •

• •

• •

Example 2.4.0.3. Suppose that C has finite limits. For any objects A,B ∈ C, we
have that Span(C)(A,B) = Span(C/A× B). Now suppose that n > 0, and that M :

A 7→ B and N : B 7→ C are parallel n-types in Span C. Then by repeatedly taking

pullbacks, we obtain an n-spanM⊗n−1N : A 7→ C. We have that Span(C)(M,N) =

Span(C/A⊗n−1 B).

Remark 2.4.0.4. A particularly important case to consider is the globular multi-

category Span(Set). This object plays the role of the “internal category of sets” in

GlobMult. (See [51] and Example 2.9.3.8 below). We write

SpanSet = Span(Set).

Example 2.4.0.5. In Chapter 4 we will frequently consider subobjects of globular

multicategories of spans, whose n-types are spans which are fibrations in one sense

or another.

Definition 2.4.0.6. For finite n, we define Spann C = trn Span C.

2.5 Globular Operads

Batanin’s [6] globular operads are another important class of globular multicategories.

Definition 2.5.0.1. A globular operad is a globular multicategory X such that

TypeX = ⊤, the terminal globular set. In other words, a globular operad has a

unique n-type for each n ∈ G. When X is a globular operad, we denote the canonical

n-type in X by n, and the canonical π-shaped n-context in X by π.
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Example 2.5.0.2. Let G be the globular operad whose only terms are identity terms.

We think of G as the theory of globular sets. See Example 2.6.0.3.

Example 2.5.0.3. When that n = 1, globular operads are the same as non-symmetric

operads in the usual sense.

Example 2.5.0.4. The terminal globular multicategory, 1, is a globular operad and

has a unique π-shaped n-term for each π ∈ pd(n). We think of 1 as the theory of

strict ω-categories.

2.5.1 Contractible Operads

Definition 2.5.1.1. A contraction on a globular operad P consists of, for each n-

pasting diagram π, and each pair of term-wise parallel π∂-shaped n-terms g, h : π∂ →
n− 1 in P, a choice of n-term lg,hπ : π → n in P such that lg,hπ : g 7→ h. We say that

P is contractible when there exists a contraction on P.

Remark 2.5.1.2. We adopt a slight variation of Leinster’s notion of contraction

(see [30], which includes a lifting condition for 0-terms. This notion can naturally

be understood homotopically (see [22] and Section 5.3 of this thesis). A comparison

between Leinster’s notion, and Batanin’s original notion [6] can be found in [16]

Definition 2.5.1.3. We say that a globular operad P is normalised when it has a

unique 0-term, id0 : 0→ 0.

Example 2.5.1.4. Various notions of weak higher category are parametrised by a

normalised contractible globular operad. See for instance [6–8,14,16,30].

2.5.2 Endomorphism Operads

Definition 2.5.2.1. A globular object, A, in a globular multicategory X consists of

a 0-type A0 in X, together with, for each 1 ≤ k, a k-type Ak : Ak−1 7→ Ak−1.

Example 2.5.2.2. Suppose that C is a category with pullbacks. Then a globular

object A in Span C is precisely a globular object A : Gop → C in C.

Let A be a globular object in a globular multicategory X. Then for each pasting

diagram π, there is a canonical context πA such that for each k-cell x ∈ π(k), we have
that πA(x) = Ak.
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Remark 2.5.2.3 (see ( [6])). Let A and X be as above. Then the endomorphism

operad EndA is the subobject of X such that a term f : π → n in EndA is a π-shaped

term

πA −→ An

in X. The assignment A 7→ EndA extends to arrows in an obvious way. In particular,

whenever X = Span C, this assignment defines the objects-part of a functor

End : CGop −→ GlobMult

2.6 Algebras

Following a general trend in categorical semantics, we can view a globular multicat-

egory as an algebraic theory. Under this lens, we make the following definition:

Definition 2.6.0.1. An algebra of a globular multicategory X is a homomorphism

X→ SpanSet. A homomorphism between algebras is a transformation between these

homomorphisms of globular multicategories.

Example 2.6.0.2. Algebras of the terminal globular operad, 1, are strict n-categories.

When P is a normalised contractible operad, algebras of P are some sort of weak higher

category.

Example 2.6.0.3. Algebras of the operad, G, are globular sets.

Example 2.6.0.4. When n = 1, and X is an operad, we recover the usual notion of

algebra of a non-symmetric operad.

Definition 2.6.0.5. Issues of size will not play a large rule in this thesis, but we will

very occasionally need a good notion of small set. For concreteness, we define a small

set to be a set within a particular Grothendieck universe. We say that a globular

multicategory X is small, when TypeX(n) and TermX(n) are small sets, for all n.

We say that a homomorphism of globular categories is small when its type-wise and

term-wise fibers are small sets.

Definition 2.6.0.6. Suppose that X0 and X are small globular multicategories, and

that I : X0 → X is a homomorphism of globular multicategories. Then we have an

adjunction of the following form:

GlobMult(X0, SpanSet) GlobMult(X, SpanSet)

LanI

⊥

I◦−
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Proof. By construction, every n-context Γ in SpanSet can be viewed as an n-type Γ′

taking pullbacks. Suppose that we have an algebra F0 : X0 → SpanSet. Then we

define the data of the homomorphism F = LanI(F0) inductively so that:

� For each k-type A0 ∈ X0, and each element a0 ∈ F0(A0), there is an element

ι(a0) ∈ F(I(A0)).

We require that ι(a0) : ι(sa0) 7→ ι(ta0). It follows that for each k-context Γ,

and each a⃗0 ∈ Γ′, we have an element ι(⃗a0) ∈ F(I(Γ))′.

� For each k-term f : Γ→ B in X, and each a⃗ ∈ F(I(Γ))′, there is an element

F(f)(⃗a) ∈ F(I(B)).

We require that F (f)(⃗a) : F (sf)(sa⃗) 7→ F (tf)(t⃗a).

� For each term f0 : Γ0 → B0 in X0, and each element a0 ∈ F0(Γ)
′, we require

that:

F(I(f0))(ι(⃗a0)) = ι(F0(f0)(⃗a0))

� For each type A ∈ X, and each element a ∈ F(A), we require that:

F(idA)(a) = a.

� Suppose that we have f : Γ→ ∆ and g : ∆→ B in X. Then for each a⃗ ∈ F(Γ)′,
we require that:

F(f ; g)(⃗a) = F(g)(F(f)(⃗a)).

The size requirements placed on X ensure that this definition makes sense. The

required universal property is easily verified.

Remark 2.6.0.7. We can also see this result by noting that I : X0 → X corresponds

to a map between essentially algebraic theories, and that algebras of X0 and X are

models of these essentially algebraic theories.

Remark 2.6.0.8. In many cases, the adjunction defined by this left Kan extension is

monadic. In particular, let X be any small globular multicategory, and let X0 be the

globular multicategory with the same types as X but whose only terms are identity

terms, and let I : X0 → X be the obvious inclusion. Then we have that

GlobMult(X0, SpanSet) = G-Set/Type(X0)
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Furthermore, algebras of X are the same as the algebras of the monad associated to X
that is described by Leinster [30, §4.3], and the functor I◦− : GlobMult(X, SpanSet)→
GlobMult(X0, SpanSet) is the monadic forgetful functor defined ibid.

Example 2.6.0.9. Let X be the globular multicategory inductively defined such that:

� There are two 0-types A = H0A, and B = H0B in X. A 0-term is either an

identity term or a canonical term f0 : A→ B.

� For each k ≥ 0, there are exactly two (k + 1)-types. These types are of the

form:

Hk+1A : HkA 7→ HkA Hk+1B : HkB 7→ HkB

It follows that a π-shaped context Γ in X, is completely determined by its source

(or target) 0-type.

� Suppose that n ≥ 0. Let Γ be an (n+ 1)-context in X and let M be a (n+ 1)-

type in X. We must have that sΓ = tΓ and sM = tM . Suppose that we have

an n-term fsΓ,sM : sΓ→ sM . Then there is a unique (n+ 1)-term

fΓ,M : Γ −→M, fsΓ,sM −7→ fsΓ,sM .

Thus, types and terms in X are completely determined by their 0-dimensional sources

and terms are effectively “directed” from A to B. We say that a term f : Γ → M

such that s0Γ = s0M = A is in the A-component of X. Similarly, we say that f is in

the B-component of X when s0Γ = s0M = B. These components correspond to two

canonical homomorphisms

1 X
Ā

B̄

from the terminal globular operad. Furthermore, to give an algebra F : X→ SpanSet

is to give a pair of strict ω-categories FĀ, F B̄ together with a strict ω-functor FĀ→
FB̄ between them.

Let X0 be the subcategory of X whose 0-terms f : Γ→M either satisfy s0Γ = s0M

or have the form

fHkA,HkB : HkA→ HkB

Then an algebra F0 : X0 → SpanSet amounts to a choice of strict ω-categories

F0Ā,F0B̄ together with a map between their underlying globular sets. Let I : X0 → X
be the obvious inclusion. Both left Kan extension and composition with I respect the
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source and target ω-categories, FĀ and FB̄. Fixing FĀ and FB̄ , we obtain the

adjunction

Strω -Catmap(FĀ,FB̄) Strω -Cat(FĀ,FB̄)

LanI

⊥

I◦−

defining the free strict ω-functor monad on maps between the underlying globular

sets of FĀ and FB̄.

2.6.1 Discrete Opfibrations

Leinster [30] defines a multicategory of elements construction, associating, to each

algebra X → SpanSet, a discrete opfibration Y → X. We will now describe this

construction in our terminology and show how it can be seen as the result of pulling

back along a classifying discrete opfibration.

Definition 2.6.1.1. We say that a homomorphism of globular multicategories F :

Y → X is a discrete opfibration, when for each context Γ in Y and each term f :

F(Γ)→ A in X, there is a unique term f̃ : Γ→ Ã such that F(f̃) = f .

Remark 2.6.1.2. Leinster [30, §6.3] gives the following equivalent definition: a ho-

momorphism of globular multicategories F : X → Y is a discrete opfibration if the

induced square

TermX

TTypeX

TermY

TTypeY

Ctx

F1

F0

Ctx

is a pullback square.

Definition 2.6.1.3. Suppose that X is a globular multicategory, and that F : X →
SpanSet is an algebra of X. Then we define el(F), the globular multicategory of

elements of F, as follows:

� An n-type in el(F) is a pair (A, a) where A is an n-type in X, and a ∈ FA.
It follows that an n-context in el(F) amounts to a pair (Γ, γ), where Γ is an

n-context, γ ∈ F(Γ)′.
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� An n-term f : (Γ, γ)→ (A, a) in el(F) is an n-term in f : Γ→ A in X such that

F(f)(γ) = a.

The next result now follows immediately:

Proposition 2.6.1.4. The canonical projection πF : el(F)→ X is a discrete opfibra-

tion.

Definition 2.6.1.5. We define SpanSet⋆, the globular multicategory of pointed spans,

as follows:

� A type of SpanSet⋆ is a type M : A 7→ B of SpanSet together with an element

m ∈ M . It follows that a context Γ in SpanSet⋆ amounts to a context Γ in

SpanSet together with an element γ in the pullback Γ′ defined by Γ.

� A term f : (Γ, γ) → (A, a), sf 7→ tf of SpanSet⋆ is a term f : Γ →
A, sf 7→ tf in SpanSet such that f(γ) = a.

Let π⋆ : SpanSet⋆ → SpanSet be the canonical projection. It is immediate from

this definition that π⋆ is a discrete opfibration. Furthermore, our description of glob-

ular multicategories of elements makes the following alternative description evident:

Theorem 2.6.1.6. The category of elements of an algebra F : X → SpanSet is the

pullback depicted in the following diagram:

el(F) SpanSet⋆

X SpanSet

πF

⌟
π⋆

F

Remark 2.6.1.7. Leinster [30] observes that, for each globular multicategory X, this
defines an equivalence between the categories of small discrete opfibrations over X and

algebras of X. Thus, Theorem 2.6.1.6 says that π⋆ is a classifying discrete opfibration:

small discrete opfibrations are precisely pullbacks of π⋆.

Remark 2.6.1.8. We are particularly interested in the case where X is a contractible

globular operad. In this case, an algebra C : X→ SpanSet amounts to a weak higher

category, and the multicategory of elements construction allows us to construct a

globular multicategory from C. Explicitly, a k-type in el(C) is a k-cell in the higher

category C, and a term f̃ : Γ → A in el(C) amounts to a witness that the composite

of the pasting diagram Γ, using some operation f in X, is the cell A. It is notable

that we do not need any restrictions at all on the weakness of C in order for this

construction to work; whenever we have a weak ω-category described as an algebra,

C, of a globular operad, we have an n-globular multicategory, el(C).
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Remark 2.6.1.9. An analogous analysis holds when C : P → SpanSetn is an n-

category, for some finite n. In this case, the globular multicategory of elements of C
is an n-globular multicategory eln P.

2.7 The Vertical Construction

Suppose that F : P → SpanSet is an algebra of a contractible globular operad P.
The globular multicategory of elements construction allows us to construct a globular

multicategory whose types are cells in F. In this section, we study a novel construction

of a globular multicategory whose terms are cells in F, given good conditions on P.

Definition 2.7.0.1. We say that a normalised contractible globular operad P has

strict composition along 0-cells when the following conditions hold:

� For each k ≥ 0, and each l ≥ 0, there is a canonical compositor k-term

ckl : k ⊙0 k ⊙0 · · · ⊙0 k︸ ︷︷ ︸
l times

−→ k, ck−1
l −7→ ck−1

l .

Here we take the 0-ary sum to be the 0-type 0. We require that compositors

are closed under composition, and that ck1 = idk.

� Interchange: Suppose that π is a 0-trivial k-pasting diagram, and that f :

π → k is a k-term in P, for each l > 0, we have that

(f ⊙0 f ⊙0 · · · ⊙0 f)︸ ︷︷ ︸
l times

; ckl =

(⊙
i∈π

cdim i
l

)
; f.

where l ≥ 0, and fi is a ρi-shaped pasting diagram for some ρi with a unique

0-component. When l = 0, we define the 0-ary sum on the left-hand side to be

the unique 0-term id⋆ : 0→ 0.

Example 2.7.0.2. The terminal globular operad 1 has strict composition along 0-

cells.

Example 2.7.0.3. Whenever n ≥ 2, and P is the weak n-category operad described

by Batanin or Leinster, P does not have strict composition along 0-cells since com-

position of 1-cells is not strictly associative and unital.

Example 2.7.0.4. Let P be the 3-operad whose algebras are categories strictly en-

riched in the category of bicategories and strict 2-functors, with the cartesian product.

Then P has strict composition along 0-cells.
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In fact, we can generalise this last example in order to obtain a large class of con-

tractible globular operads with strict composition along 0-cells.

Definition 2.7.0.5. Let X be a globular multicategory. Then we define the globular

multicategory E(X) as follows:

� There is a unique 0-type ⋆ and a unique 0-term id⋆.

� Suppose that n > 0 and that π = Σ(π1)⊙0 · · ·⊙0Σ(πl) is an n-pasting diagram.

A π-shaped n-term in E(X) is a sequence of (n−1)-terms f1, . . . fl in X such that

fi is a πi-shaped. Composition of n-terms in E(X) is induced by composition

of (n− 1)-terms in X.

Remark 2.7.0.6. It is follows that an algebra of E(X) is precisely a category enriched

in the category of algebras of X with its cartesian monoidal structure.

The following result now follows immediately from the definition of E.

Theorem 2.7.0.7. If P is a contractible globular operad, then E(P) is a normalised

contractible globular operad with strict composition along 0-cells.

Proof. Suppose that P is a contractible globular operad. Then E(P) is clearly nor-

malised. When k = 0 we define c0l to be id⋆. When k > 0, we define the compositor

ckl to be the sequence (idk−1, · · · , idk−1) of length l. The conditions on compositors

are now easily verified.

We now verify contractibility of E(P). Suppose that n ≥ 0, that π is an (n + 1)-

pasting diagram, and that g, h : π∂ → n are term wise parallel n-terms in E(P).
When n = 0, we must have that g = h = id⋆, and

π = 1⊙0 1⊙0 · · · ⊙0 1︸ ︷︷ ︸
l times

= Σ0⊙0 · · ·Σ0︸ ︷︷ ︸
l times

.

Hence, we can define f : π → n+ 1, g 7→ h by

f = (id0, . . . , id0)︸ ︷︷ ︸
l times

.

Suppose that n > 0, that π = Σ(π1)⊙0 · · ·⊙0Σ(πl). Then π∂ = Σ(π1)∂⊙0 · · ·⊙0Σ(πl)∂.

Furthermore, we must have that

g = (g1, . . . , gl), h = (h1, . . . , hl),

where g, h are parallel (πi)∂-shaped (n−1)-terms in X. Hence, since P is contractible,

for each 1 ≤ i ≤ l, there exists f i : πi → n, gi 7→ hi in P. Hence, f = (f 1, . . . , f l) :

π → n+ 1 in E(P). Thus, E(P) is contractible.
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Remark 2.7.0.8. Suppose that P is a normalised contractible globular operad with

strict composition along 0-cells. Let F : P → SpanSet be an algebra of P. Suppose

that we have been given k-cells f1, . . . fl in F such that t0fi = s0fi+1. Then we define

a notion of composition by:

f1 ◦0 f2 ◦0 · · · fl = F(ckl )(f1 ⊙0 f2 ⊙0 · · · ⊙0 fl).

The properties of compositors ensure that the operation − ◦0 − is associative, and

that the unit of ◦0 at a 0-cell A ∈ F(0), is F(ck0)(A). Suppose that g1, . . . , gl are π-

shaped diagrams in F such that t0gi = s0gi+1. Then we define the π-shaped diagram

g1 ◦0 · · · ◦0 gl element-wise by setting

g1 ◦0 · · · ◦0 gl =
⊙
i∈π

(g1)i ◦0 · · · ◦0 (gl)i

=
⊙
i∈π

F(cdim i
l )((g1)i ⊙0 · · · ⊙0 (gl)i)

=

(⊙
i∈π

F(cdim i
l )

)(⊙
i∈π

((g1)i ◦0 · · · ◦0 (gl)i)

)
= F(

⊙
i∈π

cdim i
l )(g1 ⊙0 · · · gl).

Suppose that π is a 0-trivial pasting diagram, and that o : π → k is a term in P.
Then Interchange implies that

F(o)(g1 ◦0 · · · ◦0 gl) = F(o)(F(
⊙
i∈π

cdim i
l )(g1 ⊙0 · · · ⊙0 gl))

= F(

(⊙
i∈π

cdim i
l

)
; o)(g1 ⊙0 · · · ⊙0 gl)

= F((o⊙0 · · · ⊙0 o); c
k
l )(g1 ⊙0 · · · gl)

= F(o)(g1) ◦0 F(o)(g2) · · · ◦0 F(o)(gl)

Definition 2.7.0.9. Suppose that P is a normalised contractible globular operad

with strict composition along 0-cells. Let F : P→ SpanSet be an algebra of P. Then
we define the vertical globular multicategory V(F) as follows:

� A 0-type in A V(F) is a 0-cell Ā of F(0).

� A 0-term f : A → B in V(F) is a 1-cell f̄ : Ā → B̄ in F(1). In this case, we

define of to be the 1-term id1 in P.
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� For each 0-cell A ∈ F, and each n > 0, there is a unique n-type Hn
A such that

sHn
A = tHn

A = Hn−1A. Given a 0-type A in V(F), we say that an n-context Γ

is A-simple, when each type in Γ is of the form Hn
A, for some n ≥ 0.

� Suppose that n > 0. Given an A-simple π-shaped n-context Γ, an n-term

f : Γ→ Hn
B, sf 7→ tf in V(F) consists of an (n+ 1)-cell

f̄ : sf −→ tf

in F, together with a (n+ 1)-term

of : Σπ −→ n+ 1, osf −7→ otf

in P. Now suppose that f : Γ→ ∆ is a substitution. Then Γ must be A-simple,

and ∆ must be B-simple, for some 0-cells A,B ∈ F(0). Let i ∈ Σ∆(n). Recall

that when n > 0, each i ∈ Σ∆(n) can be viewed as an element i′ ∈ ∆(n − 1).

When n = 0, the set Σ∆(n) has exactly two elements, ⋆s, and ⋆t, such that, for

all m > 0, and all j ∈ Σ∆(m), we have that s0j = ⋆s and t0j = ⋆t. We define

an n-cell f̄i in F by:

f̄i =


fi′ if n > 0

A if n = 0 and i = ⋆s

B if n = 0 and i = ⋆t

We define an n-term oif in P by

f̄i =


oi′ if n > 0

id0 if n = 0 and i = ⋆s

id0 if n = 0 and i = ⋆t

Hence we define
f̄ =

⊙
i∈Σ∆

fi′ , of =
⊙
i∈Σ∆

ofi .

to be the corresponding Σ∆-shaped pasting diagrams in F and TermP respec-

tively,

� Suppose that we have an n-substitution f : Γ → ∆, and an n-term g : ∆ → A

in V(F). Then we define the composite f ; g by:

f ; g = F(og)(f̄) ◦0 ḡ of ;g = of ;og
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� Composition is associative since

f ; (g;h) = F(og;h)(f̄) ◦0 g;h

= F(og;h)(f̄) ◦0 F(oh)(ḡ) ◦0 h̄

= F(oh)(F(og)f̄ ◦0 ḡ) ◦0 h̄

= F(oh)(f ; g) ◦0 h̄

= (f ; g);h

The middle equality follows from Remark 2.7.0.8.

� We define idHn
A
by

idHn
A
= F(cn+1

0 )(Ā), oidHn
A
= idn+1

� Composition is unital since, for any f : Γ→ A,

f ; idA = F(idn+1)(f̄)

= f̄

= F(cn+1
0 )(B̄) ◦0 f̄

= F(id0; c
n+1
0 )(B̄) ◦0 f̄

= F((
⊙
i∈ΣΓ

cdim i
0 );of )(B̄) ◦0 f̄

= F(of )(F(
⊙
i∈ΣΓ

cdim i
0 )(B̄)) ◦0 f̄

= F(of )(F(
⊙
i∈Γ

cdim i+1
0 )(B̄)) ◦0 f̄

= idΓ; f

The middle equality follows from Remark 2.7.0.8.

Remark 2.7.0.10. An analogous analysis holds when C : P → SpanSetn is an n-

category, for some finite n. In this case, the vertical globular multicategory Vn(X) is
an (n+ 1)-globular multicategory.

Example 2.7.0.11. Suppose that C is a strict 2-category. Then there is a corre-

sponding vertical double category. The virtual double category V(C) associated to

this double category is such that:

� A 0-type in V(C) are objects of C.

� A 0-term in V(C) is a 1-cell of C.
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� For each object A ∈ C, there is a unique 1-type HA : A 7→ A in V(C).

� A term of the form

A A A

B B

f

HA

⇓ϕ

HA

g

HB

is a 2-cell ϕ : f ⇒ g in C. The composite

A A A

B B B

C C

h ⇓ψ

HA

i ⇓ξ j

f
HB

⇓ϕ
HB

g

HC

is the composite (ψ ◦1 ξ) ◦0 ϕ : f ◦0 h⇒ g ◦0 j. The coherence laws of C imply

that this notion of composition is associative and unital.

2.8 Representability

Globular multicategories are close cousins of the monoidal globular categories intro-

duced by Batanin [6] as a natural environment for studying higher categories. Every

monoidal globular category has an underlying globular multicategory, and the globu-

lar multicategories arising in this way are characterised by a representability property.

This correspondence is analogous to the characterization of monoidal categories as

(non-symmetric) multicategories which are representable in a suitable sense. A very

general statement of results of this flavour, including an unbiased variant of the results

of this section, can be found in [17]. Here, we will explicitly describe the relationship

between globular multicategories and monoidal globular categories.

Recall that a globular category C is a globular object in the category of categories.

Whenever M is an object (or arrow) in C(k) such that sM = A and tM = B, we

write M : A 7→ B, just as we do for globular multicategories. Whenever A is an

object or arrow in C(0) we write A : ⋆ 7→ ⋆.

Definition 2.8.0.1 ( [6]). A monoidal globular category is an ω-category internal to

the category of globular categories whose unit associativity laws hold up to isomor-

phism. This amounts to a globular category C together with:
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� for each l < k, type-wise composition functors

⊗l : C(k)× C(k) −→ C(k)

� for each k, a unit functor

Z : C(k) −→ C(k + 1)

� natural transformations and axioms, mimicking those of a strict ω-category up

to isomorphism.

When these natural transformations are all identities, we say that a monoidal glob-

ular category is strict. We denote the category of monoidal globular categories by

MonGlobCat.

Remark 2.8.0.2. Batanin [6] has proven a coherence theorem for monoidal globu-

lar categories: every monoidal globular category is equivalent to a strict monoidal

globular category.

Remark 2.8.0.3. Monoidal n-globular categories are defined analogously.

Example 2.8.0.4. Suppose that C is a strict n-category. Then C can be seen as a

strict monoidal (n− 1)-globular category Sq C such that:

� A k-type in Sq C is a k-cell in C.

� Type-wise composition comes from composition in C.

� A k-term f :M → N, sf 7→ tf in Sq C is a (k + 1)-cell:

A B

C D

M

sf tf

N

� Composition of terms also comes from composition in C.

Proposition 2.8.0.5. There is a functor U⊗ : MonGlobCat → GlobMult. This

functor is injective on objects and faithful.

Proof. Let C be a monoidal globular category. We define the globular multicategory

U⊗C as follows:
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� A k-type M : A 7→ B in U⊗C is an object ⌜M⌝ : ⌜A⌝ 7→ ⌜B⌝ of C(k).

� Let Γ =
⊙

x∈Γ Γx be a k-context in U⊗C. Repeatedly applying the type-wise

composition functors −⊗− of C, we obtain an object

⌜Γ⌝ =
⊗
x∈Γ

Zk−dimx⌜Γx⌝

of C(k) such that ⌜Γ⌝ : ⌜sΓ⌝ 7→ ⌜tΓ⌝. Here we need to choose an order

of composition. However, this choice is unique up to canonical isomorphism

because of the coherence theorem for monoidal globular categories.

� A k-term f : Γ→M, sf 7→ tf in U⊗C is a morphism

⌜f⌝ : ⌜Γ⌝ −→ ⌜M⌝, ⌜sf⌝ −7→ ⌜tf⌝

in C(k).

� Suppose that g : ∆→ Γ is a k-substitution in U⊗C. Then the coherence axioms

of C induce a canonical isomorphism,

⌜∆⌝ =
⊗

y∈∆ ∆y

⊗
x∈Γ
⊗

y∈∆x
Zk−dimx⌜(∆x)y⌝ =

⊗
x∈Γ⌜∆x⌝.∼

α

We define ⌜g⌝ : ⌜∆⌝→ ⌜Γ⌝, ⌜sg⌝ 7→ ⌜tg⌝ to be the following composite:

⌜∆⌝
⊗

x∈Γ⌜∆x⌝
⊗

x∈Γ⌜Γx⌝ = ⌜Γ⌝.α
∼

⊗
x∈Γ

⌜gx⌝

� Whenever g : ∆ → Γ is a substitution in U⊗C, and f : Γ → M is a term, we

define

⌜f ; g⌝ = ⌜f⌝; ⌜g⌝, and ⌜idf⌝ = id⌜f⌝ .

The coherence laws of C ensure that composition of terms in U⊗C is associative

and unital.

This assignment is easily seen to be functorial, injective on objects and faithful.

Suppose that we have a globular multicategory of the form U⊗C. Then we can

recover the type-wise composition of C by looking for terms satisfying the following

universal property:
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Definition 2.8.0.6. We say that an n-substitution f : Γ→ ∆, sf 7→ tf in a globular

multicategory X is strictly representing when, for any m ≥ n, any m-type A, and any

term-wise parallel (m− 1)-terms gs : s∆→ tA and gt : t∆→ tA, the map

[∆→ A, gs 7→ gt] [Γ→ A, sf ; gs 7→ tf ; gt]
f ;−

is a bijection.

Example 2.8.0.7. Suppose that X = U⊗C. Let n ≥ 1, and let M : A 7→ B and

N : B 7→ C be n-types in X. Define the n-type M ⊗n−1 N in U⊗C by

⌜M ⊗n−1 N⌝ = ⌜M⌝⊗n−1 ⌜N⌝

Then the morphism id⌜M⌝⊗n−1⌜N⌝ in C corresponds to a term m : M ⊙n−1 N →
M⊗n−1N, idA 7→ idC in U⊗C. We think ofm as witnessing the type-wise composition

of M and N . Since composition with idM⊗n−1N is a bijection in C, the term m is

strictly representing in U⊗C.

This example motivates the following definition:

Definition 2.8.0.8. Suppose that Γ is an n-context in a globular multicategory X.
We say that a strictly representing n-term mΓ : Γ→

⊗
Γ is a compositor for Γ if:

� We have that n = 0, and mΓ = idΓ.

� We have that n > 1, and mΓ : msΓ 7→ mtΓ, where msΓ, mtΓ are compositors

for sΓ, tΓ respectively.

In this case, we refer to
⊗

Γ as the composite of Γ.

Remark 2.8.0.9. It follows that composites are well-defined up to unique isomor-

phism.

Arguing as in Example 2.8.0.7, it is clear that, for any monoidal globular category

C, every context Γ in U⊗C has a compositor. In fact, this property characterises

globular multicategories of this form.

Definition 2.8.0.10. A globular multicategory X is representable if and only if each

context in X admits a compositor.

Proposition 2.8.0.11. A globular multicategory is in the essential image of U⊗ :

MonGlobCat→ GlobMult if and only if it is representable.
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Proof. We have already seen the “if”-direction. For the “only if”-direction, suppose

that X is a globular multicategory, and that each context Γ in X admits a compositor

mΓ : Γ→
⊗

Γ. Then we define a monoidal globular category C such that:

� An object of C(n) is a type of X.

� A morphism f : A→ B of C(n) is a term f : A→ B of X.

� The type-wise composite of n-types M : A 7→ B and N : B 7→ C is defined to

be the target
⊗

(A⊙B) of the compositor of the n-context A⊙B.

� The unit of an n-type A is defined to be the target
⊗

[A] of the compositor of

the (n+ 1)-context [A].

The coherence laws of C now follow from the universal properties of the compositors,

and by construction we have that U⊗C ∼= X.

Example 2.8.0.12. A virtual double category is representable exactly when it un-

derlies a pseudo-double category. See [17].

Example 2.8.0.13. Type-wise composites in Span C can be computed as certain

limits; this essentially follows from the definition of Span. The unit of an n-type A

in Span C is the (n + 1)-span A : A 7→ A whose left and right legs are both identity

arrows.

Remark 2.8.0.14. Suppose that X is a representable globular multicategory. Then

terms in X can be composed type-wise. Suppose that f : Γ → ∆, sf 7→ tf is a

substitution in X. Let mΓ,m∆ be compositors of Γ and ∆ respectively. Then the

universal property of mΓ implies that there exists a unique⊗
f :
⊗

Γ −→
⊗

∆,
⊗

sf −7→
⊗

tf,

such that mΓ;
⊗

f = f ;m∆.

Example 2.8.0.15. When f : Γ → ∆ is a substitution is Span C, the composite⊗
f :
⊗

Γ→
⊗

∆ is the following canonical arrow between limits⊗
Γ = lim

y∈∆
Γy lim

y∈∆
∆y =

⊗
∆.

lim fy

From this point onwards, we identify MonGlobCat with the 2-category GlobMult⊗

of globular multicategories, with chosen compositors, and compositor preserving ho-

momorphisms.
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2.9 Families Constructions

In this section, we generalise the families construction on categories (see [9]) to a

family (pun intended!) of constructions on globular multicategories. We will see that

these constructions freely add coproducts, in a suitable sense.

We will need to consider the differences between ω-globular multicategories and

finite dimensional globular multicategories more carefully in this section. Hence, for

the remainder of this section, we suppose that X is a d-globular multicategory for

some 0 ≤ d ≤ ω. For convenience of notation, we define [d] = {n finite | n ≤ d}.

2.9.1 The Total Families Construction

Definition 2.9.1.1. There is a d-globular multicategory Fam
[d]
d X whose types are

indexed collections of types in X. The assignment Fam
[d]
d : GlobMult → GlobMult

is strictly 2-functorial. We refer to this functor as the total families construction.

Proof. Let ⋆ be the unique (−1)-type of Fam
[d]
d X. Then we define I⋆ to be the one-

element set {⋆}. We will define Iid⋆ to be the function id⋆ : {⋆} → {⋆}. We now

define the n-types, n-terms, and various related data of Fam
[d]
d X, for each n ∈ [d], by

induction on n.

� An n-type M : A 7→ B in Fam
[d]
d X consists of, for each i ∈ IA and j ∈ IB, an

index set IM(i, j) together with, for each k ∈ IM(i, j), an n-type

M(k) : A(i) −7→ B(j).

Note that IM can equivalently be seen as an n-span of sets

IM : IA −7→ IB.

� Suppose that Γ : sΓ 7→ tΓ is a π-shaped n-context in Fam
[d]
d X. Then we have

a π-shaped diagram (IΓx)x∈Γ in Type(SpanSet). Let IΓ : IsΓ 7→ ItΓ be the

type-wise composite of this diagram; that is, IΓ = limx∈Γ IΓx . For each y ∈ Γ,

let πy : IΓ → IΓy be the canonical projection from this limit. Let

IsΓ ⊗n−1 ItΓ = {i ∈ IsΓ, j ∈ ItΓ | i, j parallel in Type(SpanSet)}

For each (i, j) ∈ IsΓ ⊗n−1 ItΓ, let IΓ(i, j) be the collection of elements in the set

IΓ mapping down to (i, j) in IsΓ⊗n−1. It follows that each k ∈ IΓ(i, j) induces

a π-shaped n-context Γ(k) : sΓ(i) 7→ tΓ(j).

58



� An n-term f : Γ → M, sf 7→ tf in Fam
[d]
d X consists of, for each i ∈ IsΓ and

each j ∈ ItΓ, a function

If : IΓ(i, j)→ IM(sf(i), tf(j)),

together with a term

f(k) : Γ(k) −→M(If (k)), sf(i) −7→ tf(j)

for each k ∈ IΓ(i, j).

� Suppose that f : Γ → ∆ is an n-substitution in Fam
[d]
d X. We define If to be

the canonical function

IΓ = lim
y∈∆

IΓy lim
y∈∆

Iy = I∆.
lim Ify

For each i ∈ IsΓ, j ∈ ItΓ and k ∈ IΓ(i, j), we define

f(k) =
⊙
y∈∆

fy(πyk).

By construction, we have that f(k) : Γ(k) → ∆(If (k)), sf(i)) 7→ tf(j). Now

suppose that we have a term g : ∆ → M in Fam
[d]
d X. Then, for each i, j, k as

above, we define If ;g(k) = Ig(If (k)) and

(f ; g)(k) = f(k); g(If (k)) : Γ(k) 7→M(If ;g(k)), s(f ; g) 7→ t(f ; g).

� Since for any n-type M , we have that
⊙

[M ] = M , we have that I[M ] = IM .

Hence, we define the unit term idM : [M ]→M by

IidM = idIM , idM(i) = idM(i) .

The associativity and the unit laws now follow from the corresponding laws in

X.

It is easily verified that this assignment is strictly 2-functorial.

Example 2.9.1.2. Consider the terminal n-globular multicategory 1n. Then Fam[n]
n (1n) ∼=

Spann(Set).

Example 2.9.1.3. A 0-globular multicategory is just a category C, and Fam
[0]
0 C is

the usual families construction on categories (see [9]).
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Remark 2.9.1.4. Truncation commutes with the total family construction; for any

n ∈ [d], we have a natural isomorphism trn Fam
[d]
d X ∼= Fam[n]

n trnX.

Proposition 2.9.1.5. Suppose that X is representable. Then Fam
[d]
d X is also repre-

sentable.

Proof. We define n-compositors in Fam
[d]
d X by induction on n ≥ 0. Suppose that Γ

is an n-context. If n = 0, then
⊗

Γ = Γ and we define mΓ = idΓ. Suppose that

n ≥ 1. and that Γ is an n-context in Fam
[d]
d X. Then we define the n-type

⊗
Γ by:

I⊗Γ =
⊗

(Ix)x∈Γ = IΓ

(
⊗

Γ)(k) =
⊗

(A(k))x:A∈Γ =
⊗

Γ(k)

We define the compositor mΓ : Γ →
⊗

Γ, msΓ 7→ mtΓ by setting, for each k ∈
IΓ(i, j),

ImΓ
(k) =

⊗
(mIA)x:A∈Γ

mΓ(k) = mΓ(k)

Now suppose that f : Γ→M, msΓ; gs 7→mtΓ; gt is an m-term in Fam
[d]
d X, for some

m ≥ n. Then we define g :
⊗

Γ → M, gs 7→ gt by setting Ig = If , and, for each

k ∈ IΓ(i, j), defining g(k) :
⊗

Γ→M, gs(i) 7→ gt(i) to be the unique term such that

mΓ; g(k) = f(k). It follows that mΓ; g = f and that g is the unique term in Fam
[d]
d X

with this property.

2.9.2 Level-wise Families Constructions

Frequently, we only consider families at a particular level (dimension) or set of levels

of X.

Definition 2.9.2.1. Let S ⊆ [d]. Then we define FamS
d X to be the subobject of

Fam
[d]
d X such that:

� Suppose that n /∈ S and that M : A 7→ B is an n-type in FamsX. We require

the following diagram to be a pullback square:

IM IA

IB I∂2M

⌟

, where I∂2M = IsA ⊗n−1 ItA = IsB⊗n−1ItB. In other words, for all (i, j) ∈ I∂M ,

we require that IM(i, j) = {⋆}. In particular when n < MinS, we have that

IM = {⋆}. Thus, in this case, an n-type in FamS
d X can equivalently be seen as

an n-type in X.
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� When n ∈ S, we do not impose any further restrictions on n-types or n-terms

(besides the restrictions on their source and target types and terms).

Remark 2.9.2.2. In the infinite dimensional case, we define

FamS X = FamS
ω S.

Example 2.9.2.3. Suppose that X is a 1-globular multicategory with a unique 0-

type. Then X can be seen an ordinary multicategory, and Fam
{0}
1 X is the matrices

construction described by Leinster [30].

Remark 2.9.2.4. Truncation commutes with level-wise family constructions: when-

ever n ≤ d and S ⊆ [n], we have a natural isomorphism

trn Fam
S
d X ∼= FamS

n trnX.

Remark 2.9.2.5. Level-wise families constructions do not necessarily preserve rep-

resentability. Suppose that d = 1. Then every monoidal category (C,⊗, I) can be

viewed as a representable 1-globular multicategory, with a unique 0-type, and whose

1-types are the objects of C. Let A be a set; that is, a 0-type in Fam
{0}
1 (C). Then,

following [17], when C has small coproducts, and ⊗ preserves them on both sides,

the globular multicategory Fam
{0}
1 (C) is representable. In particular, when C has

an initial object ⊥ and ⊗ preserves initial objects, we may define a compositor,

m[A] : [A]→ HA, idA 7→ idA, of the 1-context [A] by

HA(a, a
′) =

{
I if a = a′

⊥ if a ̸= a′
m[A](a) = idI .

On the other hand, suppose that C does not have an initial object. Then Fam
{0}
1 (C)

need not be representable. For example, suppose that C is the category of non-empty

sets with the cartesian product as its monoidal structure. Suppose that A is a two-

element set, and let M be the 1-type in Fam
{0}
1 (C) defined by:

M(a, a′) =

{
{⋆} if a = a′

A if a ̸= a′

Then, there is a unique term A→M, idA 7→ idA. However, for any 1-type N : A 7→
A, considering N(a, a′), for a ̸= a′, we find that there must be at least four different

terms in [N →M, idA 7→ idA]. Hence, the 1-context [A] cannot have a compositor

in Fam
{0}
1 (C).
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However, level-wise families constructions do preserve a weaker notion of repre-

sentability.

Definition 2.9.2.6. We say that a d-globular category is representable up to level

l ∈ [d], when every l′-context has a compositor for l′ ≤ l.

Proposition 2.9.2.7. Suppose that the globular multicategory X is representable up

to level l. Then Fam{l}
n (X) is representable up to level l.

Proof. Suppose that l′ ≤ l, and that Γ is an l′-context in Fam
{l}
d (X). Then the

compositor of Γ described in Proposition 2.9.1.5 is a compositor in Fam
{l}
d (X).

2.9.3 Coproducts

It is well known (see for instance [9][(3.5)]) that the families construction freely adds

small coproducts to categories. We can characterise the total and level-wise families

constructions by similar properties.

Definition 2.9.3.1. Let A = {Ai : sA 7→ tA}i∈I be a collection of parallel l-types

in X. A coproduct of A consists of the following data:

� An l-type
∐

i∈I AI : sA 7→ tA, together with, for each i ∈ I, an inclusion term

ιi : Ai →
∐
i∈I

Ai, idsA 7→ idtA .

� Suppose that n ≥ l. Suppose that Γ is a π-shaped n-context in X such that,

for some l-variable x in Γ, we have that Γx =
∐

i∈I AI . Suppose that x is not

the source or target of any other variable in Γ. Then, for each i, since
∐

i∈I AI

and Ai are parallel, there is a context Γ[Ai/x], together with an inclusion term

ιΓi : Γ[Ai/x]→ Γ defined by

Γ[Ai/x](y) =

{
Ai if y = x

Γy if y ̸= x
ιΓi =

{
ιi if y = x

idΓy if y ̸= x

for each y ∈ π. When n = l, we have that ιΓi : idsΓ 7→ idtΓ, and when n > l, we

have that ιΓi : ιsΓi 7→ ιtΓi . For any n-type B in X, we require that the induced

function

[Γ→ B, g 7→ h]
(ιΓi )i∈I ;−−−−−−→

∏
i∈I

[Γ[Ai/x]→ B, sn−1ι
Γ
i ; g 7→ tn−1ι

Γ
i ;h]

is a bijection.
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We say that X has coproducts at level l when every set of parallel l-types has a co-

product. When X has coproducts at every level, we simply say that X has coproducts.

Remark 2.9.3.2. Let S ⊆ [d]. There are a number of ways of defining the 2-category

GlobMultS⨿ of d-globular multicategories with coproducts at level l for each l ∈ S.
Coproducts are unique up to unique isomorphism, and so it is natural to consider the

objects of GlobMultS⨿ to be globular multicategories such that the required coprod-

ucts exist, together with homomorphisms sending each coproduct to some coproduct.

On the other hand, we could consider globular multicategories together with a choice

of coproduct, and homomorphisms which preserve these choices, either up to isomor-

phism, or strictly. Finally, it can be useful to require that these choices of coproducts

satisfy certain natural properties. For example, we might require that the coproduct

of a one element set {M} is exactly M . The advantage of some of these defini-

tions over others is that certain properties which, a priori, hold up to isomorphism

may in fact hold on the nose. Fortunately, all these ways of defining the 2-category

GlobMultS⨿ are equivalent, and for our purposes, will not need to worry about the

precise choice of definition.

Remark 2.9.3.3. A different notion of coproduct for monoidal globular categories

is studied in [6][§5].

Example 2.9.3.4. Suppose that X is representable. Then X has coproducts at level

l if and only if the following conditions hold:

� Each set of parallel l-types {Mi}i∈I has a coproduct
∐

i∈IMi in the category

TypelX, and these coproducts can be chosen such that whenever ι : Mj →∐
i∈IMi is a canonical projection, we have that ι : idA 7→ idB.

� For each k ∈ [d] such that 1 ≤ k ≤ d − l, the unit functor Zk : TypelX →
Typel+k X preserves these coproducts.

� Whenever k < l ≤ n, composition of n-types along k-types, −⊗k −, commutes

with these coproducts on both sides.

In particular, X = Spand(C) has coproducts if and only if C has small coproducts and

these coproducts are stable under pullback.

Example 2.9.3.5. The globular multicategory Fam
[d]
d X has coproducts. We define

the coproduct of a collection {Mr : A 7→ B}r∈R of l-types in Fam
[d]
d X by setting

I⨿
r
Mr(i, j) =

∐
r∈R

IMr(i,j).
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Hence, an element of I⨿
r
Mr(i, j) amounts to a pair (r, k), where r ∈ R, and k ∈ IMr(i,j).

Hence, we define (∐
r∈R

Mr

)
(r, k) =Mr(k).

The inclusions are now induced by the universal property of coproducts in Set. This

argument also shows that FamS
d X has coproducts at level l for each l ∈ S. This

assignment extends to a strict 2-functor FamS
d : d - GlobMult→ d - GlobMultS⨿.

We can now state the universal property of families constructions.

Theorem 2.9.3.6. Let S ⊆ [d]. The families construction, FamS
d : GlobMult →

GlobMultS⨿, is the (weak) left adjoint of the 2-functor US
⨿ : GlobMultS⨿ → GlobMult

that forgets coproducts at level l for l ∈ S.

d -GlobMult d -GlobMultS⨿

FamS
d

⊥

US
⨿

Proof. First suppose that X is a d-globular multicategory. For each n-type M in

X, let ⋆M : {⋆} → TypeX be the constant function such that ⋆M(⋆) = M . Then

we define the unit ηS⨿(X) : X → US
⨿ FamS

d X to be the homomorphism sending each

n-type M ∈ X to the following one-element family:

IηS⨿(X)(M)(⋆, ⋆) = {⋆}, ηS⨿(X)(M) = ⋆M .

Suppose that Y has coproducts at level l for l ∈ S. Then we define the counit

ϵS⨿(Y) : Fam
S
d U

S
⨿Y→ Y to be the homomorphism such that

ϵS⨿(Y)(M) =
∐
k∈IM

M(k) :
∐
i∈IsM

sM(i) −7→
∐
j∈ItM

tM(j)

The triangle identities hold up to isomorphism since, for each n-type M in US
⨿Y, we

have that
(US

⨿ϵ
S
⨿ ◦ ηS⨿US

⨿)(Y)(M) =
∐
k∈{⋆}

⋆M(⋆) =
∐
k∈{⋆}

M ∼= M

and, for each n-type M in FamS
d X, we have that

(ϵS⨿ FamS
d ◦FamS

d η
S
⨿)(X)(M) =

∐
k∈IM

({⋆}, ⋆M(k))
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and so
I(ϵS⨿ FamS

d ◦FamS
d η

S
⨿)(X)(M) =

∐
k∈IM

{⋆} ∼= IM

(ϵS⨿ FamS
d ◦FamS

d η
S
⨿)(X)(M)(k, ⋆) = ⋆M(k)(⋆) =M

Remark 2.9.3.7. In particular, when S = [d], it follows that the total families

construction is left adjoint to the functor which forgets coproducts at all levels.

Example 2.9.3.8. Combining Theorem 2.9.3.6 with Example 2.9.1.2, we find that

SpanSet is the free coproduct completion of 1.

Suppose that S ⊆ [d], and that T ⊆ [d] \ S. Then the same proof shows that we

have a 2-adjunction:

d - GlobMultS⨿ d - GlobMultS∪T⨿

FamT

⊥

UT
⨿

As a consequence of these universal properties, in order to freely add coproducts at

certain levels, we can iteratively apply families constructions at those levels in any

order. For example. when n is finite this allows us to re-obtain the total families

construction, Fam[n]
n , up to natural equivalence, as the composite:

GlobMult GlobMult0⨿ . . . GlobMult
{0,...,n}
⨿

Fam
{0}
n Fam

{1}
n Fam

{n}
n

More generally, even when S = {l0, l1, . . .} is infinite, FamS is naturally equivalent to

the 2-colimit of the following diagram:

GlobMult . . . GlobMult
{l0,...,ln}
⨿ · · ·Fam{l0} Fam{ln} Fam{ln+1}

In particular, When S = [ω], the total families construction, Fam[ω]
ω , is the 2-colimit

of the following diagram:

ω - GlobMult . . . GlobMult
{0,...,n}
⨿ . . .Fam{0} Fam{n}

Remark 2.9.3.9. Suppose that X is a globular multicategory with coproducts. Con-

sider the following diagram in GlobMult:

· · · Fam[1] U
[1]
⨿ X Fam[0] U

[0]
⨿ X X

ϵ1⨿ ϵ0⨿ ϵ−1
⨿

Here, ϵi⨿ is the canonical arrow, taking coproducts at level i, that is induced by the

counit of the adjunction U
{i}
⨿ ⊢ Fam{i}. Then it is easily seen that Fam[ω] X is the

limit of this diagram in GlobMult.
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Chapter 3

Strict Homomorphism Types

We now describe what it means for an n-globular multicategory to have homo-

morphism types. A 1-globular multicategory has homomorphism types when each

0-type A comes with a 1-type HA : A 7→ A, together with a reflexivity term

rA : A → HA, idA 7→ idA satisfying an analogue of the Yoneda lemma. In higher

dimensions, each type comes with a whole tower of homomorphism types,

A,HA,H2
A,H3

A, . . . ,

resembling the towers of identity types present in intensional type theory. For each

level of this tower, we require a reflexivity term that satisfies an analogue of the

Yoneda Lemma.

The functor forgetting homomorphism types has a right adjoint:

GlobMultH GlobMult

UH

⊥

Mod

A one-dimensional analogue of this result is already known: Crutwell and Shul-

man [17] have shown that the monoids and modules construction on virtual double

categories (see [17, 30, 31]), first defined by Leinster, has a universal property of this

form. We call our higher-dimensional right adjoint the strict higher modules construc-

tion. In the spirit of [20], we describe how the strict higher modules construction can

be obtained by applying a generalisation of the 1-dimensional monoids and modules

construction at each level (dimension) of a globular multicategory.

Many fundamental objects in category theory are the result of applying the

monoids and modules construction [17]. Perhaps the most well-known result in this

direction is that a monoid in the bicategory of spans of sets is precisely a category.
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Analogously, the data obtained using the strict higher modules construction turn

out to be fundamental objects in strict higher category theory. We describe how

the globular multicategory of strict higher modules in SpanSet is equivalent to the

collection of strict ω-categories, strict profunctors between strict ω-categories, and

strict higher transformations between these objects. We also show how strict higher

modules constructions are closely related to iterated enrichment.

3.1 Degeneracies

Suppose that x : A is a variable in a context Γ. Then, there is a context, Γ ⊕x HA,

obtained from Γ by adding a homomorphism type at x; when studying homomorphism

types, we will frequently encounter contexts of this form. Similarly, we will often speak

of substitutions with a term (typically a reflexivity term) added at some variable.

Consequently, it will be useful to have an explicit description of these contexts and

substitutions. The types and terms added in this way are always degenerate, in the

sense that each such type (or term) has the same source and target type (or term).

Hence, we will first describe a process which adds a degeneracy to a labelled pasting

diagram, and then specialise this discussion to understand adding a degeneracy to

contexts and substitutions, which are, by definition, certain labelled pasting diagrams.

3.1.1 Adding degeneracies to pasting diagrams

Suppose that 0 ≤ k < n. Let π be an n-pasting diagram, and let x be a k-cell of π.

In this section, we describe an operation that “adds a (k + 1)-cell at x”. Let ∂Dk+1

be the subobject of the representable Dk+1 such that

x ∈ ∂Dk+1(l) ⇐⇒ l < k + 1.

Thus, ∂Dk+1 is generated by a pair of parallel k-cells. For example, the following

diagram depicts ∂D2:

• •

Let δ : ∂Dk+1 → Dk+1 be the canonical subobject inclusion. Let ∇ : ∂Dk+1 → Dk be

the map which identifies the two k-cells of ∂Dk+1. We define the globular set π ⊕̄x H̄
to be the following pushout in G-Set:

∂Dk+1 Dk π

Dk+1 π ⊕̄x H̄

∇

δ

x

H̄x
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Thus, whenever X is a globular set, to give a map π ⊕̄x H̄ → X is to give a map

f : π → X, together with a (k+1)-cell H̄x such that sH̄x = tH̄x = fx. For example,

when π is the following 2-pasting diagram,

x B C
g

f

y
ϕ (3.1.1.a)

and x and y are as labelled in this diagram, then π ⊕̄x H̄ is the following globular set:

x B CH̄x

g

f

y
ϕ (3.1.1.b)

, and π ⊕̄y H̄ is the following globular set:

x B C
g

f

ϕ
y

H̄y

(3.1.1.c)

As these examples illustrate, for any choice of π and x, the globular set π ⊕̄x H̄ is

not a pasting diagram: the added cell H̄x has the same source and target, namely x,

and no cell in a pasting diagram can have this property. Nonetheless, we can define

a pasting diagram that approximates π ⊕̄x H̄.

Definition 3.1.1.1. Suppose that 0 ≤ k < n. Suppose that π = (π1, . . . , πl) is an

n-pasting diagram, and that x is a k-cell of π. We define an n-pasting diagram π⊕xH
together with a (k + 1)-cell Hx in π ⊕x H by induction on k.

First suppose that k = 0. Then x = (i) for some 0 ≤ i ≤ l, and we define

π ⊕x H = (π1, . . . , πi, ⋆, πi+1, . . . , πl)

= (π1, . . . , πi)⊙0 D
1 ⊙0 (πi+1, . . . , πl)

We define Hx ∈ (π ⊕x H)(1) to be the unique 1-cell of the summand D1.

Now suppose that k > 0, and that x = (i, x′) for some 1 ≤ i ≤ l and some

x′ ∈ πi(k − 1). By induction, we have already defined πi ⊕x′ H. Hence, we define

π ⊕x H = (π1, . . . , πi−1, πi ⊕x′ Dk, πi+1, . . . , πl)

= (π1, . . . , πi−1)⊙0 Σ(πi ⊕x′ H)⊙0 (πi+1, . . . , πl)

By induction, we have defined a k-cell Hx′ in πi ⊕x′ H. Hence, we define Hx to be

the corresponding (k + 1)-cell in the summand Σ(πi ⊕x′ H)(k + 1).
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Example 3.1.1.2. Suppose again that π is the 2-pasting diagram (3.1.1.a)

x B C
g

f

y
ϕ

and x and y are as labelled in this diagram. Then, π ⊕x H is the following pasting

diagram:

x0 x1 B C
g

f

yHx
ϕ (3.1.1.d)

and π ⊕y H is the following pasting diagram:

A B C
g

f

y1

y0

ϕ Hy (3.1.1.e)

In the preceding examples and throughout this thesis, we adopt the convention

that sHx = x0 and tHx = x1. This illustrates the key difference between π ⊕̄x H̄ and

π ⊕x H: the former adds a loop H̄x at x such that sH̄x = tH̄x = x, while the latter

replaces x by a (k+1)-cell whose source and target are distinct k-cells. The following

result now formalises this observation and describes how π⊕xH approximates π ⊕̄x H̄.

Proposition 3.1.1.3. There exists a map of globular sets Qπ
x : π ⊕x H → π ⊕̄x H̄

such that, for any globular set X, to give a map

f : π ⊕x H −→ X

such that sf(Hx) = tf(Hx) is to give a map

f̄ : π ⊕̄x H̄ −→ X

such that f = f̄ ◦Qπ
x.

Proof. We proceed by induction on k. First, suppose that k = 0. Then we de-

fine Qπ
x to be the map induced by including (π1, . . . , πi) and (πi+1, . . . , πl) into π =

(π1, . . . , πl), and by sending Hx to H̄x. Now suppose that k > 0. Then x = (i, x′).

We define Qπ
x to be the map induced by including (π1, . . . , πi) and (πi+1, . . . , πl) into

π = (π1, . . . , πl), and by defining the component of Qπ
x at Σ(πi ⊕x′ H) to be ΣQπi

x′ .

The required property of Qπ
x is now easily verified.
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Example 3.1.1.4. Suppose once more that π is the 2-pasting diagram (3.1.1.a). The

map Qπ
x : π ⊕x H → π ⊕̄x H̄ is the quotient map from (3.1.1.d) to (3.1.1.b) sending

x0 7→ x, x1 7→ x andHx → H̄x and fixing all other labels. The map Qπ
y is the quotient

map from (3.1.1.e) to (3.1.1.c) sending y0 7→ y, y1 7→ y and Hy → H̄y and fixing all

other labels.

Proposition 3.1.1.5. Suppose that π is an n-pasting diagram. Suppose that x is a

k-variable of π such that k < n. If x /∈ skπ. then we have the following alternative

description of π ⊕x H:
π ⊕x H =

⊙
y∈π

pπ,xy

where

pπ,xy =

{
Dk+1 ⊙k Ddim y if dim y > k and sky = x

Ddim y otherwise

Similarly, if x /∈ tkπ, then
π ⊕x H =

⊙
y∈π

qπ,xy

where

qπ,xy =

{
Ddim y ⊙k Dk+1 if dim y > k and tky = x

Ddim y otherwise

Proof. Suppose that ρ is a k-trivial pasting diagram. Then, we have that

Dk+1 = Σk+1D0 = Σk+1
⊙
y∈ρ

D0 =
⊙

y∈Σk+1ρ

dk+1
y

where

dk+1
y =

{
Σk+1D0 if dim y > k

Ddim y otherwise

=

{
Dk+1 if dim y > k

Ddim y otherwise

Hence,

ρ⊙k Dk+1 =
⊙
y∈ρ

(Ddim y ⊙k dk+1
y )

and
Dk+1 ⊙k ρ =

⊙
y∈ρ

(dk+1
y ⊙k Ddim y).

We will now prove the first identity of the proposition. The second follows by

a similar argument. Suppose that π = (π1, . . . , πl). We proceed by induction on k.

First, suppose that k = 0. Then, x = (i) for some 0 ≤ i ≤ l. For each cell y in π such
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that dim y > k, we have that sky = x ⇐⇒ y ∈ πi. Combining this with the fact

that (πi) is 0-trivial, we obtain

π ⊕x H = (π1, . . . , πi)⊙0 D
1 ⊙0 (πi+1, . . . , πl)

= (π1, . . . , πi−1)⊙0 (πi ⊙0 D
1)⊙0 (πi+1, . . . , πl)

=
⊙

y∈(π1,...,πi−1)

(Ddim y)⊙0

⊙
y∈(πi)

(Ddim y ⊙0 d
1
y)⊙0

⊙
y∈(πi+1,...,πl)

(Ddim y)

=
⊙
y∈π

pπ,xy

Now suppose that k > 0, and x = (i, x′). By the inductive hypothesis, we have that

πi ⊕x′ Hx′ =
⊙

y∈πi p
πi,x

′
y . Furthermore, it is easily seen that

Σpπ,x
′

y = pΣπ,x
′

y .

Hence,

Σ(πi ⊕x′ Hx′) =
⊙
y∈Σπi

pΣπi,x
′

y ,

However, by the inductive hypothesis, we have that

π ⊕x H = (π1, . . . , πi−1, πi ⊕x′ Hx′ , πi+1, . . . , πl)

= (π1, . . . , πi−1)⊙0 Σ(πi ⊕x′ H)⊙0 (πi+1, . . . , πl)

=
⊙

y∈(π1,...,πi−1)

(Ddim y)⊙0

⊙
y∈(πi)

(pπ,xy )⊙0

⊙
y∈(πi+1,...,πl)

(Ddim y)

=
⊙
y∈π

pπ,xy .

The following two propositions follow straightforwardly from the definition of π⊕x
HA.

Proposition 3.1.1.6. Suppose that 0 ≤ k < n. Suppose that π is an n-pasting

diagram, and that x is a k-cell of π. We have that

π ⊕x H⊕x0 H = π ⊕x H⊕x1 H.

Proposition 3.1.1.7. Suppose that π is an n-pasting diagram. Suppose that x ̸= y

are distinct cells of π such that dimx < n and dim y < n. Then,

π ⊕x H⊕y H = π ⊕y H⊕x H.
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These propositions allow us to understand repeated applications of −⊕−. Suppose
that S{x1, . . . , xl} ⊆ π(k) is a set of k-cells. Then, repeatedly applying Defini-

tion 3.1.1.1, we obtain a pasting diagram

π ⊕S H = π ⊕x1 H⊕x2 H⊕x3 · · · ⊕xl H

Furthermore, this pasting diagram does not depend on the order of the xi. The

following alternative description of π⊕HS generalises Proposition 3.1.1.5, and follows

by a similar argument.

Proposition 3.1.1.8. Suppose that π is an n-pasting diagram. Suppose that x is a

k-variable of π such that k < n. If x ∩ skπ(k) = ∅. Then, we have the following

alternative description of π ⊕x H:

π ⊕S H =
⊙
y∈π

pπ,xy

where

pπ,xy =

{
Dk+1 ⊙k Ddim y if dim y > k and sky ∈ S
Ddim y otherwise

Similarly, if x ∩ tkπ(l) = ∅, then

π ⊕S H =
⊙
y∈π

qπ,xy

where

qπ,xy =

{
Ddim y ⊙k Dk+1 if dim y > k and tky ∈ S
Ddim y otherwise

3.1.2 Adding degeneracies to contexts and substitutions

Suppose that X is a globular multigraph, that Γ is a π-shaped n-context in X, and
that x : A is a k-variable in Γ. Then, whenever H : A 7→ A is an (k + 1)-type in X,
we define the (π ⊕x H)-shaped n-context, Γ⊕x H, to be the map π ⊕x H → TypeX

induced by Definition 3.1.1.1 and the following dotted arrow:

∂Dk+1 Dk π

Dk+1 π ⊕̄x H̄

TypeX

∇

δ

x

Γ

H
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Suppose that f : Γ→ ∆ is a π-shaped substitution, and that y is a k-variable in ∆.

Suppose that h : fy 7→ fy is a (k+1)-term in X. Then, similarly, there is a canonical

(π ⊕x H)-shaped substitution f ⊕y h induced by Definition 3.1.1.1 and the following

dotted arrow:

∂Dk+1 Dk π

Dk+1 π ⊕̄x H̄

TermX

∇

δ

y

f

h

More generally, suppose that S = {x1 : A1, . . . , xm : Am} ⊆ Γ(k) is a set of k-

variables. Suppose that for each i, we have a type HAi
: Ai 7→ Ai. Then there

is a canonical π ⊕S H-shaped context Γ⊕S H defined by

Γ⊕S H = Γ⊕x1 HA1 ⊕x2 · · · ⊕xm HAm

This context does not depend on the order of the xi.

Remark 3.1.2.1. By Proposition 3.1.1.5, if S ∩ skπ(k) = ∅, we have that

Γ⊕S H =
⊙
y:B∈Γ

P π,x
y

where

P π,x
y =

⊙
y:B∈Γ

{
HAi
⊙k if dim y > k and sky = xi

B otherwise

Similarly, if S ∩ tkπ(k) = ∅, then for each variable y : B in Γ, we have that

Γ⊕S H =
⊙
y:B∈Γ

Qπ,x
y

where

Qπ,x
y =

⊙
y:B∈Γ

{
B ⊙k HAi

if dim y > k and tky = xi

B otherwise

A similar statement holds for terms and substitutions.
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3.2 Definition

Now that we have defined what it means to add degenerate types to a context, we can

describe what it means for a globular multicategory to have homomorphism types.

Firstly, we require that each n-type A be equipped a homomorphism (n + 1)-type

HA and a reflexivity term rA : A → HA. Secondly, composition with reflexivity

terms should give a bijection between terms which removes homomorphism types

from source contexts.

Definition 3.2.0.1. A reflexive globular multigraph consists of a globular multigraph

X together with, for each n-type A, a homomorphism (n+ 1)-type

HA : A −7→ A

and a reflexivity (n+ 1)-term

rA : A −→ HA, idA −7→ idA .

A reflexive globular multicategory is a globular multicategory together with a choice

of reflexive structure for its underlying globular multigraph.

Definition 3.2.0.2. Suppose that X is a reflexive globular multigraph. Let 0 ≤ k <

n. Suppose that Γ is a π-shaped n-context in X, and that x : A is a k-variable in Γ.

It follows that we have a canonical (π ⊕x HA)-shaped context Γ ⊕x HA. We define

the (π ⊕x HA)-shaped reflexivity substitution

rΓx : Γ→ Γ⊕x HA

by rΓx = idΓ⊕xrA. When Γ is clear from the context, we will simply denote this

substitution by rx. When k = n− 1, we have that

Γ⊕x HA : sΓ −7→ tΓ, rΓx : idsΓ −7→ idtΓ,

and, when k < n− 1, we have that

Γ⊕x HA : sΓ⊕x HA −7→ tΓ⊕x HA, rΓx : rsΓx −7→ rtΓx .

More generally, suppose that S = {x1 : A1, . . . , xm : Am} is a set of k-variables in

Γ, for some k < n. Then, we define a context Γ ⊕S H, and a substitution rΓS : Γ →
Γ⊕S H by

Γ⊕S H = Γ⊕x1 HA1 ⊕x2 · · · ⊕xm HAm , rΓS = idΓ⊕x1rA1 ⊕x2 · · · ⊕xm rAM
.

This definition does not depend on the order of the xi.
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Example 3.2.0.3. Suppose that Γ is the following partially labelled 2-context

• A •M

Suppose that x : A is the 0-variable whose type, A, is labelled in this diagram.

Suppose that y : M is the 1-variable whose type, M , is labelled in this diagram.

Then Γ⊕x HA is the following context:

• A A •

p

p

M
HAp

and rΓx is the following substitution:

•

A

• A

A •

A

•

p

p
M

HAp

p

M

p

p

prAMM

On the other hand, we have that Γ⊕y HM is the following context:

• A •

p

p

M

p
M

HM
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and rΓy is the following substitution:

•

A

• •

A

•

p

M

p

p

M

M

p
HM

prM

p

M

Definition 3.2.0.4. Suppose that X is a reflexive globular multicategory. Suppose

that 0 ≤ k < n. Suppose that A is a k-type in X. We say that X has a strict

homomorphism type at A when, for each k < n, each n-context Γ, each k-variable

x : A in Γ, and each n-type M , and each pair of term-wise parallel (n − 1)-terms

g : sΓ→ sM, h : tΓ→ tM , the composition map

[Γ⊕x HA −→M, g −7→ h] [Γ −→M, sn−1rx; g −7→ tn−1rx;h]
rΓx ;−

is a bijection with inverse Jx. We say that X has strict homomorphism types when

X has a homomorphism type at A for each k-type A. We denote the 2-category

of globular multicategories with chosen strict homomorphism types, homomorphism

type preserving homomorphisms, and transformations between them by GlobMultH.

Remark 3.2.0.5. Suppose that n is finite. Then, we say that an n-globular mulitcat-

egory X has strict homomorphism types when X has a homomorphism type at A for

each k-type A with k < n. We denote the 2-category of globular multicategories with

chosen strict homomorphism types, homomorphism type preserving homomorphisms,

and transformations between them by n - GlobMultH.

Remark 3.2.0.6. In the terminology of Definition 2.8.0.6, a globular multicategory

has homomorphism types when every reflexivity substitution is strictly representing.

Thus, globular multicategories with homomorphism types occupy a middle ground

between general globular multicategories and representable globular multicategories.

Remark 3.2.0.7. Suppose that A is a k-type in X in a globular multicategory. Then,

strict homomorphism types of A are unique up to unique isomorphism.
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Remark 3.2.0.8. Suppose that f : Γ→M is an n-term in a globular multicategory

with homomorphism types. Suppose that n > l. Let S = {x1 : A1, . . . , xm : Am} ⊆
Γ(l) be a collection of l-variables in Γ. Then there is a unique term

JS(f) : Γ⊕x1 HA1 ⊕x2 · · · ⊕xn HAm →M

such that rΓS; JS(f) = f . We have that

JS(f) = Jx1 · · · Jxm(f)

and this definition does not depend on the order of the xi.

3.3 Examples and Properties

Example 3.3.0.1. Suppose that A is a 0-type in a 1-globular multicategory. Then,

a homomorphism type at A consists of a 1-type HA together with a 1-term

A A

A A

⇓rA

HA

such that, for any m,n ≥ 0, and any sequences 1-types (Mi : Bi−1 7→ Bi)0<i≤m, and

(Ni : Ci−1 7→ Ci)0<i≤n, such that Mm = A, and C0 = A, pre-composing with the

substitution

B0 . . . A A . . . Cn

B0 . . . A A . . . Cn

M1p Mmp N1p Nnp

M1
p

Mm
p HA

p
N1
p

Nn

rA

defines a bijection between terms of the form

B0 · · · A A · · · Cn

D E

M1

⇓

Mm HA N1 Nn

O

and terms of the form

B0 · · · A · · · Cn

D E

M1

⇓

Mm N1 Nn

O
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Thus, strict homomorphism type in 1-globular multicategories are precisely the hor-

izontal units described by Crutwell and Shulman [17].

Ibid., the monoids and modules construction for virtual double categories is ex-

hibited as the right adjoint of the 2-functor which forgets horizontal units. Many

familiar collections of “category-like” objects can be seen as the result of this con-

struction. Hence, any such collection gives rise to a 1-globular multicategory with

homomorphism types.

Example 3.3.0.2. Let C be a monoidal globular category. Then, following Re-

mark 3.2.0.6 the corresponding globular multicategory U⊗C has homomorphism types.

In order to make this explicit, let A be an n-type in U⊗C. Then we define HA to be

the (n+ 1)-type such that

⌜HA⌝ = Z(A).

The (n+ 1)-context [A] in U⊗C corresponds to the object ⌜[A]⌝ = Z(A) in C, and so

we define the reflexivity term rA : [A]→ HA in U⊗C to be the term corresponding to

the identity arrow

idZ(A) : Z(A)→ Z(A)

in C. Now suppose that we have n-context Γ in U⊗(C), and a k-variable x : A for

some 0 ≤ k < n. Then ⌜rΓx⌝ : ⌜Γ⌝→ ⌜Γ⊕x HA⌝ is a coherence law of C that adds a

unit Z(A). Consequently, ⌜rΓx⌝ has an inverse

⌜Γ⊕x HA⌝ ⌜Γ⌝.
uΓx

Whenever f : Γ → M is an n-term in U⊗(C) we define Jx(f) : Γ ⊕x HA → M to be

the term in U⊗C such that ⌜Jx(f)⌝ is the following composite:

⌜Γ⊕x HA⌝ ⌜Γ⌝ M
uΓx ⌜f⌝

in C. It follows that Jx is the inverse of composition with rΓx .

Example 3.3.0.3. For any category with pullbacks, the globular multicategory Span(C)
has strict homomorphism types. For each n-type A, the homomorphism type HA :

A 7→ A is the trivial span A
idA←−− A

idA−−→ A, and the reflexivity term rA : A → HA is

the identity arrow idA : A→ A.

Example 3.3.0.4. The terminal globular operad 1 has strict homomorphism types.

We define Hn = n + 1, and we define rn to be the unique term n → n + 1. For

each f : π → n, and x ∈ π, we define Jx(f) to be the unique term such that

Jx(f) : π ⊕x HA → n.
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Example 3.3.0.5. Suppose that P is a contractible globular operad with strict ho-

momorphism types. Then the contraction ! : P→ 1 has a strict homomorphism type

preserving section F : 1→ P defined inductively by

F(rn) = rn, F(Jx(f)) = Jx(F(f)).

See Chapter 5 where we show that 1 is freely generated from a 0-type by adding strict

homomorphism types. We conjecture that this result implies that algebras of P are

equivalent to strict ω-categories in an appropriate sense.

Proposition 3.3.0.6. Discrete opfibrations reflect strict homomorphism types.

Proof. Suppose that X is a globular multicategory, and that A is an n-type in X with

a strict homomorphism type. Suppose that F : Y → X is a discrete fibration, and

that Ã is an n-type in Y such that F(Ã) = A. We define rÃ : Ã → HÃ to be the

unique term in Y such that F(rÃ) = rA : A→ HA. Suppose that m > n, and that Γ

is an m-context in Y, and that x : A is a variable in Γ. Suppose that f : Γ → M is

an m-term in Y. Then we define Jx(f) : Γ⊕x HA → M ′ to be the unique term in Y
such that F(Jx(f)) = Jx(F(f)) in X. By definition of rÃ, we have that

F(rΓx ; Jx(f)) = rF(Γ)x ; Jx(F(f)) = F(f).

Hence M = M ′ and f = rΓx ; Jx(f). On the other hand, whenever g : Γ ⊕x HA → M

in Y we have that

F(Jx(rΓx ; g)) = Jx(F(rx; g)) = rF(Γ)x ;F(g) = F(g)

and so Jx(rx; g) = g. Hence, we have defined the data of a homomorphism type at

Ã.

Corollary 3.3.0.7. Whenever X has strict homomorphism types and F : X →
SpanSet is an algebra of X, the globular multicategory of elements el(F) has strict

homomorphism types.

Proof. This follows from the fact that the canonical projection πF : el(F) → X is a

discrete opfibration.

Remark 3.3.0.8. Proposition 3.3.0.6 can alternatively be proved by observing that

the globular multicategory of pointed sets SpanSet⋆ has strict homomorphism types,

the universal discrete opfibration SpanSet⋆ → SpanSet preserves homomorphism

types, and the forgetful functor UH : GlobMultH → GlobMult creates pullbacks.

The result now follows, up-to-size-constraints from Remark 2.6.1.7. See also Propo-

sition 4.2.1.7 and Corollary 4.2.1.8.
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Example 3.3.0.9. Combining Corollary 3.3.0.7, and Example 3.3.0.4, whenever

C : 1 → SpanSet is a strict ω-category, the globular multicategory el(C) has strict

homomorphism types.

Example 3.3.0.10. Suppose that C : 1 → SpanSet is a strict ω-category. Then

the vertical globular multicategory V(C) has strict homomorphism types. For each

n-type Hn
A in V(C) we define HHn

A
= Hn+1

A . We define rHn
A
: Hn

A → Hn+1
A so that

rHn
A
= idn+2

A ,

and so that orHn
A
is the unique term n + 1 → n + 2 in 1. The unit laws of C now

imply that this data define a homomorphism type. In fact, this is the objects-part of

a fully-faithful functor V : Strω -Cat→ GlobMultH.

Example 3.3.0.11. Analogous results hold for n-globular multicategories and n-

categories, when n is finite.

Remark 3.3.0.12. Suppose that k < n ≤ ω. Restricting the truncation functor to

the subcategory of globular multicategories with homomorphism types, we obtain a

functor trk : n - GlobMultH → k - GlobMultH. The following diagram commutes:

n - GlobMult⊗ k - GlobMult⊗

n - GlobMultH k - GlobMultH

n - GlobMult m - GlobMult

trk

U⊗ U⊗

trk

UH UH

trk

That is, truncation functors commute with the functors forgetting representability,

and homomorphism types. Additionally, the truncation functor trk has a fully faithful

left adjoint Ltrk : k - GlobMultH → n - GlobMultH. We typically identify k-globular

multicategories with strict homomorphism types with n-dimensional globular multi-

categories with strict homomorphism types using Ltrk . However, there is a subtlety

to this identification. Let UH : GlobMultH −→ GlobMult be the functor forgetting

homomorphism types. Then, the following diagram of left adjoints does not commute:

k - GlobMultH n - GlobMultH

k - GlobMult n - GlobMult

Ltrk

UH ̸⟳ UH

Ltrk
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In order to see this, suppose that X is a globular multicategory with homomorphism

types. Then, for any m > k, the globular multicategory LtrkUHX has no m-types,

while an m-type in the globular multicategory LtrkX is an iterated homomorphism

type of a k-type in X. On the other hand, we do have the following commutative

diagram:

k - GlobMult⊗ n - GlobMult⊗

k - GlobMultH n - GlobMultH

Ltrk

U⊗ U⊗

Ltrk
′

In contrast, the corresponding result does not hold for plain globular multicategories;

the following square does not commute:

k - GlobMult⊗ n - GlobMult⊗

k - GlobMult n - GlobMult

Ltrk

U⊗ ̸⟳ U⊗

Ltrk

This is one way in which globular multicategories with homomorphism types are

more similar to representable globular multicategories than ordinary globular multi-

categories. As further examples of this phenomenon, the globular multicategory of ele-

ments construction and the vertical construction commute with Ltrk : k-GlobMultH →
n - GlobMultH. However, they do not commute with Ltrk : k - GlobMult → n -

GlobMult.

3.3.1 Free Results

Let UH : GlobMultH −→ GlobMult be the functor forgetting homomorphism types.

We will see in this section that UH satisfies many good properties by general results.

Proposition 3.3.1.1. The 2-categories GlobMult and GlobMultH are locally finitely

presentable. Furthermore, the strict 2-functor UH has a strict left 2-adjoint.

GlobMult GlobMultH

LH

⊥

UH

Proof. Enriched Gabriel-Ulmer duality tells us that there is an equivalence of 2-

categories between the 2-category of finitely complete categories (or equivalently es-

sentially algebraic theories) with limit preserving functors between them and the 2-

category of locally finitely presentable categories with finitary right adjoint functors

between them. This result is proved in the enriched setting in [29].
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The definition of GlobMult (and GlobMultH) exhibits the category of globular

multicategories (with homomorphism types) as the category of models of an essen-

tially algebraic theory. We can view these essentially algebraic theories as being

Cat-enriched by considering Type(X)(n) to be a category and not just a set. With

this convention, the 2-category GlobMult (or GlobMultH) is the category of models

of a Cat-enriched essentially algebraic theory. Furthermore, UH is a functor forgetting

some of this essentially algebraic structure, namely the homomorphism types. Hence,

applying Cat-enriched Gabriel-Ulmer duality, we immediately obtain the desired re-

sult.

Another useful property of UH can also be obtained from this analysis:

Proposition 3.3.1.2. The forgetful functor UH is conservative (reflects isomorphisms).

Proof. This is true in general of functors forgetting essentially algebraic data. We will

describe this result explicitly for clarity. Suppose that f : X→ Y is a homomorphism

of globular multicategories with homomorphism types and that g : Y → X is an

inverse homomorphism (not necessarily preserving homomorphism types). Then

g(HA) = g(HfgA) = g(f(HgA)) = HgA

g(rA) = g(rfgA) = g(f(rgA)) = rgA

and so g also preserves homomorphism types.

3.4 The Strict Higher Modules Construction

While the left adjoint of UH : GlobMult→ GlobMult exists by a general argument,

the construction of the right adjoint is more involved. Our aim in this section is to

describe how a higher-dimensional analogue of the monoids and modules construction

allows us systematically to construct “higher category-like” objects together with

higher notions of transformation and module. We will prove the following theorem:

Theorem 3.4.0.1. The forgetful functor UH : GlobMultH → GlobMult has a right

adjoint.

Crutwell and Shulman [17] have shown the 1-dimensional version of this result:
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Definition 3.4.0.2. A monoid in a 1-globular multicategory X, consists of a 0-type

A together with a 1-type HA : A 7→ A, a multiplication 1-term

A A A

A A

HA

⇓mA

HA

HA

and a unit 1-term
A A

A A

⇓rA

HA

satisfying associativity and unit laws. A module is a 1-type M : A 7→ B with actions

on the left and right by the monoids A and B. These are 1-terms of the form:

A A B

A B

HA

⇓λM

M

M

A B B

A B

M

⇓ρM

HA

M

These 1-terms must be compatible with the multiplication and units of A and B.

Monoids and modules are the types of a 1-globular multicategory ModX, and this is

the objects-part of a strict 2-functor Mod : 1 - GlobMult→ 1 - GlobMultH.

Theorem 3.4.0.3 ( [17]). The monoids and modules functor Mod : 1 -GlobMult→
1 -GlobMultH is right adjoint to the functor UH : 1 -GlobMult→ 1 -GlobMult that

forgets homomorphism type data.

Hence, in order to generalize this result to higher dimensions, we describe higher

dimensional versions of monoids and modules, and exhibit a higher dimensional mod-

ules construction Mod : GlobMult→ GlobMultH as the right adjoint of UH. We first

provide an informal overview of the notions of higher modules and their homomor-

phisms. Then we give a more detailed account of this construction and its universal

property.

3.4.1 Overview

For each n, we refer to an n-type in ModX as an n-module in X. A 1-module,

M : A 7→ B in X can be acted on by its 0-source and 0-target A and B. These

actions amount to terms whose source contexts are of the following form:

A A B,
HA M A B B.M HB
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More generally, n-modules can be acted on by their k-dimensional source and target

modules for all k < n. For example, a 2-module O, depicted as

A B

M

N

O

can be acted on by A,B,M and N . Associated to these two actions are multiplication

terms whose source contexts are

A A B

Mp

N
p

HAp O A B B

Mp

N
p

HBpO

and

A B

Mp

M

N
p

HM

O

A B

Mp

N

N
p

O

HN

respectively. We refer to n-terms in ModX as n-module homomorphisms. Like the

module homomorphisms of the 1-dimensional monoids and modules construction,

higher module homomorphisms satisfy equivariance laws. For example, given a ho-

momorphism f with the source context

A B C,

Mp

N

O
p

Pp

Q
p

R

S

T

there are two ways of building terms out of f and actions involvingHB: one is induced

by the actions of HB on R and S, while the other is induced by the action of HB

on T . We require that these two terms agree. Homomorphisms can be composed

because given composable homomorphisms f and g, the equivariance laws of f and

g can be used to construct the equivariance laws of the composite f ; g.

3.4.2 Level-wise Modules Constructions

Our tactic for making this description precise will be to first describe the actions of

l-types on n-modules separately for each l, and then later to combine these level-wise

modules constructions.
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Definition 3.4.2.1. Let l ≥ 0. A globular multicategory with homomorphism types at

level l is a globular multicategory X together with a choice of homomorphism (l+1)-

type for each l-type in X. Let S ⊆ [d]. We denote by GlobMultSH the category of

globular multicategories with homomorphism types at level l for each l ∈ S.

Fix l ≥ 0. Let U
{l}
H : GlobMult

{l}
H → GlobMult be the functor forgetting homomor-

phism types at level l. We will define a functor Mod{l} : GlobMult → GlobMult
{l}
H

such that we have an adjunction of the following form:

GlobMult
{l}
H GlobMult .

U
{l}
H

⊥

Mod{l}

This functor behaves much like the 1-dimensional monoids and modules construction.

Indeed, the monoids and modules construction on virtual double categories is easily

seen to be a special case of the construction presented here.

Let X be a globular multicategory. We now define a globular multicategory

Mod{l}X ∈ GlobMult{l}. Roughly speaking, the types of Mod{l}X are defined so

that:

� When n < l, an n-type in Mod{l} is an n-type in X.

� When n = l, an n-type in Mod{l} is an l-type A in X together with an (l+1)-type

HA, and associative and unital multiplication and unit terms. Thus, l-types are

monoids.

� When n > l, an n-type in Mod{l} is an n-type M in X together with actions of

slM and tlM on M . These actions satisfy axioms saying that M is a bimodule

over its l-source and l-target.

The terms are defined so that:

� When n < l, an n-term is just an n-term in X.

� When n = l, an n-term f : Γ→ A is an n-term of X respecting the multiplica-

tion of the l-types in Γ and A. That is, an n-term is a monoid homomorphism

� When n > l, an n-term is an n-term of X satisfying certain equivariance laws.

That is, an n-term is a module homomorphism.

85



We will make each of these cases precise inductively. First, we consider the most

straightforward case.

Definition 3.4.2.2. Suppose that n < l. Then, an n-type M : A 7→ B in Mod{l}X
consists of an n-type M0 : M0 7→ B0 in X. An n-term f : Γ → M, sf 7→ tf in

Mod{l}X is an n-term f0 : Γ0 → M0 (sf)0 7→ (tf)0 in X. Composition of n-terms is

composition in X.

Next we consider the case where n = l.

Definition 3.4.2.3. An l-monoid in X consists of an l-type M0 : A0 7→ B0 in X
together with:

� An (l + 1)-type HM :M0 →M0 in X

� A multiplication (l + 1)-term mM : HM ⊙l HM → HM0 , idM0 7→ idM in X

� A unit (l + 1)-term rM :M → HM , idM 7→ idM in X

We require that multiplication is associative and unital; that is

(mM ⊙l idHM
);mM = (idHM

⊙lmM);mM ,

and

(rM ⊙l idHM
);mM = idHM

= (idHM
⊙lrM);mM .

Example 3.4.2.4. A 0-monoid in X consists of a 0-type A0, a 1-type HA : A0 7→ A0,

a multiplication 1-term

A0 A0 A0

A0 A0

HAp HAp

HA
p
mA

and a unit 1-term
A0 A0

A0 A0HA
p

rA

such that

A0 A0 A0

A0 A0 A0

A0 A0

HA HA
p

HAp

HA
p

rA

mA

=

A0 A0

A0 A0HA
p

HAp
=

A0 A0 A0

A0 A0 A0

A0 A0

HA

HA HA
p

HAp

HA
p

rA

mA
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and

A0 A0 A0 A0

A0 A0 A0

A0 A0

HAp HAp

HA
p

HA
p

HAp

HA
p

mA

mA

=

A0 A0 A0 A0

A0 A0 A0

A0 A0

HAp HAp

HA
p

HA
p

HA
p

p

mA

mA

Example 3.4.2.5. A 1-monoid in X consists of a 1-typeM0 : A0 → B0 together with

a 2-type HM :M0 7→M9 and multiplication and unit 2-terms

A0

B0

A0

B0

M0

M0

M0

M0p

M0

HM

p

HM p

HM p

mM

M0

M0

A0

B0

A0

B0

M0

M0

M0

M0p

HM

p

rM

M0

such that

A0

B0

A0

B0

A0

B0

p

p

p

pp

p

p

p

p

HM

p

HM

p

HM

p

HM p

mM

rA

p

p

HM

p

HM

p

p

p

HM

p

=

A0

B0

A0

B0

M0

M0

M0

M0p

HM

p

HM p

M0

=

A0

B0

A0

B0

A0

B0

p

HM

p

HM

p

HM

p
pHM

mM

rA

M0

M0

HM

p

HM

p

M0

M0

HM

p
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and

A0

B0

A0

B0

A0

B0

p

p

p

p

p

p
p

p
p

HM

p
HM

p
HM

p

HM p

HM p

HM p
mM

mM

p
p
p

p HM
p

HM

p

p =

A0

B0

A0

B0

A0

B0

p

p

p

p

p

p
p

p
p

HM

p

HM

p

HM

p

HM p

HM p

HM p

mM

mM

p
p

p
p

p HM

p

HM

p

p

Definition 3.4.2.6. An l-type in Mod{l}X is an l-monoid in X.

Suppose that Γ is an l-context in Mod{l}X. Then, by construction, there is an

underlying context Γ0 =
⊙

i∈Γ(Γi)0 in X. Suppose that S = {x1 : A1, . . . , xk : Ak} is
a set of l-variables in Γ. Then, we define the (l + 1)-context HΓ

S : Γ 7→ Γ by

HΓ
S = Γ0 ⊕S H = Γ0 ⊕x1 HA1 ⊕x2 · · · ⊕xk HAk

.

Similarly, we define the (l+1)-terms rΓS : Γ→ HΓ
S, idΓ 7→ idΓ, and mΓ

S : HΓ
S ⊙lHΓ

S →
HΓ
S, idΓ 7→ idΓ by

rΓS = idΓ⊕x1rA1 ⊕x2 · · · ⊕xk rAk
, mΓ

S = idΓ⊕x1mA1 ⊕x2 · · · ⊕xk mAk
, .

In the the maximal case, when S = Γ(l), we define

HΓ = HΓ
Γ(l), rΓ = rΓΓ(l), mΓ = mΓ

Γ(l).

We denote the complement of a set S ⊆ Γ(l) by S̃. When S = {̃x}, we write rΓx̃ = rΓ
{̃x}

.

Definition 3.4.2.7. An l-monoid homomorphism f : Γ→M, sf 7→ tf in X consists

of an l-term f0 : Γ0 →M0, (sf)0 7→ (tf)0 in X, together with an (l + 1)-term

Hf : HΓ −→ HM , f0 −7→ f0,

in X. This term must respect the multiplication and unit terms of Γ and M :

mΓ;Hf = (Hf ⊙l Hf );mM , rΓ;Hf = f0; rM .
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Example 3.4.2.8. A 0-monoid homomorphism in X consists of a 0-term f0 : A→ B

together with a 1-term

A0 A0

B0 B0

f0 f0

HB
p

HAp
Hf

such that

A0 A0 A0

A0 A0

B0 B0

f0 f0

HB
p

HAp

HAp HAp

Hf

mA

=

A0 A0 A0

B0 B0 B0

B0 B0

f0

HB
p

HAp

HB
p

HAp
f0f0

HB
p

Hf Hf

mB

and
A0

A0 A0

B0 B0

f0 f0

HB
p

HAp
Hf

rA

=

A0

B0

B0 B0HB
p

f0

rB

Example 3.4.2.9. Suppose that M : A 7→ B, N : B 7→ C and O : D → E are

1-monoids in X. Then a 1-monoid homomorphism h :M ⊙0 N → O, f 7→ g consists

of a 1-term

A0 B0 C0

D0 E0

M0p N0p
f0

O0
p

g0
h0

together with a 2-term

A0

B0

D0 C0

E0

M0

N0

f0

O0

g0

M0

N0

O0

HM

p

HN

p

h0

h0

HO

p

Hh
N0
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such that

A0

B0

A0 C0

B0

D0 C0

E0

f0

g0

HM

p

HN

p
h0

h0

HO

p

HM p

HN p

HM p
HN p

Hh

mM

mN
HM

p

HN

p

HM p

HN p

HM p
HN p

=

A0

B0

D0 C0

D0 E0

E0

f0

g0

HM

p

HN

p

h0

HO

p

HN

HM

p

HO

p

h0

HO

p

Hh

Hh

mO

f0

g0

HO

p

and

A0

B0

A0 C0

B0

D0 C0

E0

M0

N0

f0

O0

g0

M0

N0

O0

M0

N0

HM

p

HNh0

h0

HO

p

Hh

rN

rM

N0

=

A0

B0

D0 C0

D0 E0

E0

M0

N0

f0

O0 g0

h0

HO

p

rO

Definition 3.4.2.10. An l-term in Mod{l}X is an l-monoid homomorphism.

Suppose that f : Γ→ ∆ is an l-substitution in Mod{l}X. Then, we define f0 : Γ0 →
∆0 by f0 =

⊙
i∈∆(fi)0. We define Hf : HΓ → H∆, f0 7→ f0 so that, for each x ∈ H∆,

(Hf )x =

{
Hfx if dim x = l + 1

(fx)0 if dim x ̸= l

Composition of l-terms is defined by:

(f ; g)0 = f0; g0, Hf ;g = Hf ;Hg.

90



Given an l-monoid A in X, we define the identity l-monoid homomorphism by

(idA)0 = idA0 , HidA = idHA
.

These data make Mod{l}X(l) a category, and they are easily seen to respect the

globular structure of Mod{l}X.
Suppose f : Γ→ M is an l-monoid homomorphism, and suppose that S ⊆ Γ0(l).

Then, we define the term Hf,S : Hf,S : HΓ
S → HM , f0 7→ f0 by

Hf,S = rΓ
S̃
;Hf .

When S is a singleton {x}, we simply write Hf,x.

Lemma 3.4.2.11. Suppose that f : Γ → M is an l-term in Mod{l}X, and that

S, T ⊆ Γ(l) are disjoint sets of l-variables. Then

(Hf,S ⊙l Hf,T );mM = Hf,S∪T

Proof. By the unit laws relating r and m, for each variable z ∈ Γ, we have that

((rS̃ ⊙l rT̃ );mΓ)z =


(idz ⊙lrz);mz if z ∈ S
(rz ⊙l idz);mz if z ∈ T
(rz ⊙l rz);mz if dim z = l and z /∈ S ∪ T
idz otherwise

=


idz if z ∈ S
idz if z ∈ T
rz if dim z = l and z /∈ S ∪ T
idz otherwise

= r
S̃∪T

Hence, since Hf preserves multiplication, we have that

(Hf,S ⊙l Hf,T );mM = (rS̃ ⊙l rT̃ ); (Hf ⊙l Hf );mM

= (rS̃ ⊙l rT̃ );mΓ;Hf

= r
S̃∪T ;Hf

= Hf,S∪T
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We now consider the n-types and -terms of Mod{l}X when n > l. This is by far

the most complicated case.

Definition 3.4.2.12. An (n, l)-moduleM in X consists of an n-typeM0 in X together

with the following data:

� When n = l + 1, we require a choice of l-monoids slM, tlM in X such that

(slM)0 = slM0 and (tlM)0 = tlM0.

� When n > l + 1, we require a choice of (n − 1, l)-modules sM, tM such that

(sM)0 = sM0 and (tM)0 = tM0.

� We require actions

λlM : HslM ⊙lM0 −→M0, ρlM :M0 ⊙l HtlM −→M0

of slM and tlM on M such that when n = l + 1, we have that

λlM , ρ
l
M : idsM −7→ idtM ,

and when n > l + 1, we have that

λlM : λlsM −7→ λltM , ρlM : ρlsM −7→ ρltM .

These actions must respect the multiplication and unit of M :

(rM ⊙l idM);λlM = idM , (idM ⊙lrM); ρlM = idM ,

and
(mM ⊙l idM);λlM = (idHslM

⊙lλlM);λlM ,

(idM ⊙lmM); ρlM = (ρlM ⊙l idHtlM
); ρlM .

Furthermore, these actions must be compatible with each other:

(idHslM
⊙lρlM);λlM = (λlM ⊙l idHtlM

); ρlM .

Example 3.4.2.13. A (1, 0)-module consists of a 1-type

A0 B0
M0p

such that A0 and B0 underlie 0-monoids, together with 1-terms

A0 A0 B0

A0 B0

M0pHAp

M0
p
λ0M

A0 B0 B0

A0 B0

M0p HBp

M0
p
ρ0M
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The laws for the action λ0M say that

A0 A0 B0

A0 A0 B0

A0 B0

M0pHAp

M0
p

M0p

λlM

rA

and

A0 A0 A0 B0

A0 A0 B0

A0 B0

M0pHAp

M0
p

HAp HAp M0p

λ0M

mA

=

A0 A0 A0 B0

A0 A0 B0

A0 B0

M0pHAp

M0
p

HAp HAp M0p

λ0M

λ0M

The laws for the action ρ0M say that

A0 B0 B0

A0 B0 B0

A0 B0

M0p HBp

M0
p

M0p

ρlM

rB

=

A0 B0

A0 B0
M0p

M0p
=

A0 B0

A0 B0
M0p

M0p

and

A0 B0 B0 B0

A0 B0 B0

A0 B0

M0p HBp

M0
p

M0p HBp HB

ρ0M

mB

=

A0 B0 B0 B0

A0 B0 B0

A0 B0

M0p HBp

M0
p

M0p HBp HB

ρ0M

ρ0M

The compatibility law for λ0M and ρ0M says that

A0 A0 B0 B0

A0 A0 B0

A0 B0

M0pHAp

M0
p

HAp M0p HBp

λ0M

ρ0M

=

A0 A0 B0 B0

A0 B0 B0

A0 B0

M0p HBp

M0
p

HBpM0pHAp

ρ0M

λ0M
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Example 3.4.2.14. A (2, 0)-module in X consists of a 2-type in X

A0 B0

M0p

N0
p
O0

p

such that M0 and N0 underlie (1, 0)-modules, together with 2-terms

A0

A0

A0 B0

B0

p

p

HAp

p

p

O0

p

O0

p

λ0M

λ0N
λ0O

p

p

A0

B0

A0 B0

B0

p

p
HBp

p

p

O0

p

O0

p

ρ0N

ρ0M
ρ0O

p

p

The laws for the action λ0M say that

A0

A0

A0 B0

A0

A0 B0

B0

p

p

HA
p

p

p

p

p

O0

p

O0

p

λ0M

λ0N

O0

prA

λ0O
p

p

=

A0

B0

A0

B0

p

p

p

p

O0

p

O0

p

p
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and

A0

A0

A0 A0

A0 A0 B0

B0

B0

p

p

HA
p

p

p

HAp
HAp

p

p

O0

p

O0

p

λ0M

λ0N

mA

O0

p
λ0O

p

p

p

p

=

A0

A0 A0

A0

A0 A0 B0

B0

B0

p

p

HA

p

p

p

HAp

HAp

p

p

O0

p

O0

p

λ0M

λ0N

O0

pλ0M

λ0N

λ0O

λ0O

p

p

p

The laws for the action ρ0M are similar. The compatibility law says that

A0

A0 A0

B0

A0 A0 B0

B0

B0

p

p

HAp

p

p

HAp

HBpp

p

O0

p

O0

p

λ0M

λ0N

O0

p

ρ0M

ρ0N

λ0O

ρ0O

p

=

A0

A0

A0 B0

A0 B0 B0

B0

B0

p

p

HB

p

p

p

HAp

p

p

HBp
O0

p

O0

p

ρ0N

ρ0M

O0

pλ0M

λ0N

ρ0O

λ0O p

p

Example 3.4.2.15. A (2, 1)-module in X consists of a 2-type

A0 B0

M0p

N0
p
O0

p
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such that M0 and N0 underlie 1-monoids, together with 2-terms

A0

B0

A0

B0

p
p

p

p

p

O0 p

HM p

O0

p

λ1O

p
A0

B0

A0

B0

p
p

p

p

p

HN p

O0 p

O0

p

ρ1O

p

The laws for the action λ1O say that

A0

B0

A0

B0

A0

B0

p
p

p

p

p

p
p

p

O0 p

HM p

O0

p

O0 p

λ1O

rM

p
p

=

A0

B0

A0

B0

p

p

p

p

O0

p

O0

p
p

and

A0

B0

A0

B0

A0

B0

p
p

p

p

p

p
p
p
p

O0 p

HM p

O0

p

O0 p

HM p

HM p

λ1O

mM

p
p
p

p
p

=

A0

B0

A0

B0

A0

B0

p

p

p

p

p

p
p
p
p

O0 p

HM p

O0

p

O0 p

HM p

HM p

λ1O

λ1O
p

p

p
p
p
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The laws for the action ρ1O are similar. The compatibility law of λ1O and ρ1O says that

A0

B0

A0

B0

A0

B0

p

p

p

p

p

p
p
p
p

O0 p

HM p

O0

p

HN p

HM p

O0 p
λ1O

ρ1O
p

p

p
p
p

=

A0

B0

A0

B0

A0

B0

p
p

p

p

p

p
p
p
p

HN p

O0 p

O0

p

HN p

HM p

O0 p

ρ1O

λ1O

p
p
p

p
p

Example 3.4.2.16. Every l-monoid induces a canonical (l+1, l)-module over itself:

given an l-monoid A, the (l + 1)-type HA can be made into an (l + 1, l)-module by

defining λHA
= ρHA

= mA.

Definition 3.4.2.17. An n-type of Mod{l}X is an (n, l)-module in X.

Suppose that Γ is an n-context in Mod{l}X. Then, the action terms of the modules

in Γ assemble into action substitutions on Γ. Suppose that x : A is an l-variable in

Γ. When x /∈ tlΓ, we define the π-shaped n-substitution λΓx so that, for each y : M

in Γ0,

(λΓx)y =

{
λM if dim y > l and x = sly

idM otherwise

By Remark 3.1.2.1, we have that λΓx : Γ0 ⊕x HA → Γ0. Similarly, when x /∈ slΓ, we
define the substitution ρΓx : Γ0 ⊕x HA so that, for each y :M in Γ0,

(ρΓx)y =

{
ρM if dim y > l and x = tly

idM otherwise

More generally, suppose that S = {x1, . . . , xk} ⊆ Γ(l) is a set of l-variables. Let

Γ ⊕x H = Γ0 ⊕x1 HA1 ⊕x2 · · · ⊕xk HAk
. Then, when S ∩ tlΓ(l) = ∅, we define

λΓS : Γ0 ⊕S H → Γ0 so that, for each y :M ∈ Γ,

(λΓS)y =

{
λM if dim y > l and sly ∈ S
idM otherwise

When S ∩ slΓ(l) = ∅, we define ρΓS : Γ0 ⊕S H → Γ0 so that, for each y :M ∈ Γ,

(ρΓS)y =

{
ρM if dim y > l and tly ∈ S
idM otherwise
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Example 3.4.2.18. Suppose that Γ is the following 1-context in Mod{l}X:

A B C DMp Np Op

Let x : B be the unique variable with type B in Γ. Then λΓx is the substitution:

A B B C D

A B C D

Np OpMp HBp

O
p

M
p

N
p
λ0N

On the other hand, ρΓx is the following substitution

A B B C D

A B C D

Np OpMp HBp

O
p

N
p

M
p

ρ0M

Example 3.4.2.19. Suppose that Γ is the following 2-context in Mod{l}X:

A B CMp

P
p

O

Np
Qp

Rp

Suppose that x is the unique 0-variable with type C in Γ. Then λΓx is undefined, and

ρΓx is the following substitution:

A

B

A C

B C

C

Mp

p
p
p

M
p HC

p
p

p

Q

p

R

p

Q

R

ρ0N

ρ0Oρ0P

ρ0Q
ρ0R

Suppose that Γ and M are an n-context and an n-type in Mod{l}X respectively.

An (n, l)-module prehomomorphism f : Γ → M in X is a term f0Γ0 → M0 together

with term-wise parallel l-monoid homomorphisms slf and tlf such that (slf)0 = slf0

and (tlf)0 = tlf0. Given a prehomomorphism f : Γ→ M and an l-variable x ∈ Γ(l),
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there are always two canonical ways to form an n-term Γ0⊕xHA →M0 in X; we will
denote these terms by J+

x (f) and J−
x (f0). We define these J-terms by case analysis

depending on whether x is in the l-source or l-target of Γ:

J+
x (f) =

{
λΓx ; f0 if x ̸∈ tlΓ
(f0 ⊙l Htlf,x); ρM if x ∈ tlΓ

J−
x (f) =

{
ρΓx ; f0 if x ̸∈ slΓ
(Hslf,x ⊙l f0);λM if x ∈ slΓ

When n = l + 1, we have that

J+
x (f), J

−(f) : f −7→ f

and when n > l + 1, we have that

J+
x (f) : J

+
x (sf) −7→ J+

x (tf), J−
x (f) : J

−
x (sf) −7→ J−

x (tf).

Remark 3.4.2.20. Slightly weaker conditions suffice for the construction of J+
x (f)

and J−
x (f). For example, if x ∈ tlΓ, then we need only require that tlf0 underlies a

term tlf in Mod{l}X and that M0 underlies a term M in Mod{l}X.

Example 3.4.2.21. Suppose that Γ is the 2-context in Mod{0}X defined in Exam-

ple 3.4.2.19. Suppose that x : C is the unique 0-variable in Γ with type C. Suppose

that f : Γ→ S is a (2, 0)-module prehomomorphism. Then,

J+
x (f) =

•

C

• C

• D C

D

D

Mp p
p

p

p

p
t0f0

HCp

HD
p t0f0

p

p

Q

p

R

p

S

p

Ht0f

S

p

f0

ρ0S
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and

J−
x (f) =

•

• C

C

• C C

C

D

Mp

p
p
p

M
p HC

p
p

p

p

p

t0f0

Q p

R p

Q

R

S

p

λ0Q
λ0R

f0

p HC

p

Remark 3.4.2.22. By construction, we always have that

rx; J
+
x (f) = f = rx; J

−
x (f).

We will soon see that J+
x and J−

x agree in Mod{l}X. Furthermore, in this case, the

map J+
x = J−

x is exactly the inverse to composition with rx. See Proposition 3.4.2.38.

More generally, suppose that f : Γ → M is an (n, l)-module prehomomorphism,

and let S = {x1, . . . , xm} be a set of l-variables in Γ. Then, we define

J+
S (f) = J+

x1
· · · J+

xm(f), J−
S (f) = J−

x1
· · · J−

xm(f).

The right-hand expressions always make sense because the weak conditions mentioned

in Remark 3.4.2.20 are always satisfied. The following proposition tells us that the

order of the xi makes no difference, and so J+
S (f) and J−

S (f) are well-defined.

Lemma 3.4.2.23. Suppose that f : Γ → M is an (n, l)-module prehomomorphism.

Let x : A and y : B be distinct l-variables in Γ. Then,

J+
x J

+
y (f) = J+

y J
+
x (f)

Proof. We will prove the statement for J+. The statement for J− follows by a sym-

metrical argument. First suppose that x /∈ tlΓ, and y /∈ tlΓ. Then, since x ̸= y, we

have that ρ
Γ⊕yHB
x ; ρΓy = ρΓ⊕xHA

y ; ρΓx , and so

J+
x J

+
y (f) = ρΓ⊕yHB

x ; ρΓy ; f = ρΓ⊕xHA
y ; ρΓx ; f = J+

y J
+
x (f).

Now suppose that x /∈ tlΓ, and y ∈ tlΓ. Then,

J+
x J

+
y (f) = ρΓ⊕Hy

x ; (f ⊙l Htlf,y); ρM = J+
y (ρ

Γ
x ; f) = J+

y J
+
x (f).
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A similar argument holds when x ∈ tlΓ, and y /∈ tlΓ. Finally, suppose that x /∈ tlΓ
and y /∈ tlΓ. Then, we have that

J+
x J

+
y (f) = J+

x ((f ⊙l Htlf,y); ρM)

= ((f ⊙l Htlf,y); ρM)⊙l Htlf,x); ρM

= (f ⊙l Htlf,y ⊙l Htlf,x); (ρM ⊙l idtlM); ρM

= (f ⊙l Htlf,y ⊙l Htlf,x); (ρM ⊙l idtlM); ρM

since ρM respects mtlM , we have that

J+
x J

+
y (f) = (f ⊙l Htlf,y ⊙l Htlf,x); (ρM ⊙l idtlM); ρM

= (f ⊙l Htlf,y ⊙l Htlf,x); (idtlM ⊙lmtlM); ρM

= f ⊙l ((Htlf,y ⊙l Htlf,x);mtlM); ρM

= (f ⊙l Htlf,{x,y}); ρM

The last equality follows from Lemma 3.4.2.11. By a symmetrical argument, we have

that

J+
y J

+
x (f) = (f ⊙l Htlf,{x,y}); ρM .

Hence, we have that J+
x J

+
y (f) = J+

y J
+
x (f) as required.

Proposition 3.4.2.24. Suppose that f : Γ → M is an (n, l)-module prehomomor-

phism. The following properties immediately follow from the definition of J+
S and J−

S

and the proof of the preceding lemma:

� For any l-variable x ∈ Γ(l), we have that

J+
{x}(f) = J+

x (f).

� When S ⊆ (slΓ)(l), we have that

J−
x (f) = (Htlf,S ⊙l f0);λM .

� When S ⊆ (tlΓ)(l), we have that

J+
S (f) = (f0 ⊙l Htlf,S); ρM .

� When S, T ⊆ Γ(l) are disjoint, we have that

J+
SJ

+
T (f) = J+

S∪T (f) = J+
T J

+
S (f)

J−
SJ

−
T (f) = J−

S∪T (f) = J−
T J

−
S (f)
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� By the unit laws we have that

rS; J
+(f) = f = rSJ

−
S (f).

Definition 3.4.2.25. An (n, l)-module homomorphism f : Γ→ M in X is an (n, l)-

module prehomomorphism satisfying the equivariance law,

J+
x (f) = J−

x (f),

for each l-variable x ∈ Γ. It follows immediately from this definition that:

� The source and target of an (l + 1, l)-module homomorphism are l-monoid ho-

momorphisms.

� When n > l + 1, the source and target of an (n, l)-module homomorphism are

(n− 1, l)-module homomorphisms.

Remark 3.4.2.26. Suppose that f : Γ → M is an (n, l)-module homomorphism.

Suppose that S ⊆ Γ(l) is a set of l-variables. Then, it follows immediately that

J+
S (f) = J−

S (f).

Definition 3.4.2.27. When n < l, an n-term in Mod{l}X is an (n, l)-module homo-

morphism in X.

Suppose that f : Γ→ ∆ is an n-substitution in Mod{l}X. Let x : A be an l-variable

in Γ. Then the the actions of A on the types in Γ allow us to construct a number of

different substitutions Γ ⊕x HA → ∆. For example, suppose that f is the following

1-substitution:
• A A •

• • • •

p p

p p p
f1 f2 f3

Suppose that x is the 0-variable with type A whose type is labeled in this diagram.

Then the terms J+
x (f1), J

−
x (f2), J

+
x (f2) and J−

x (f3) all induce a distinct substitution

Γ ⊕x HA → ∆. In general, for each y ∈ ∆ such that x ∈ Γy(l), we have J-terms

J+
x (fy) and J−

x (fy). The following result will enable us to describe the substitutions

that can be built from these J-terms systematically.
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Definition 3.4.2.28. Let f : Γ → ∆ be a π-shaped n-substitution in a globular

multicategory X. Let x be an l-variable in Γ. Let π|f{x} be the sub-globular set of π

such that for each k-variable y ∈ π(k), if k ≥ l, then

y ∈ π|f{x}(k) ⇐⇒ x ∈ Γy(l),

and if k < l, then y ∈ π|f{x}(k) if and only if there exists some l-variable z ∈ π|f{x}(l)
such that skz = y or tkz = y.

Lemma 3.4.2.29. The globular set π|f{x} is an (l − 1)-trivial pasting diagram.

Proof. First suppose that π is (l − 1)-trivial, and that

π = π1 ⊙l · · · ⊙l πm

where each πi is l-trivial, and m ≥ 0. Suppose that m = 0. Then, π = Dl. Since

x ∈ Γ(l), it follows that π|f{x} = Dl. This is certainly an (l − 1)-trivial pasting

diagram. Hence, suppose that m > 0. Then each πi corresponds to a πi-shaped

substitution fi : Γi → ∆i such that

f = f1 ⊙l · · · ⊙l fm,

Thus, we have that

Γ = Γ1 ⊙l · · · ⊙l Γm

We claim that S = {1 ≤ i ≤ m | x ∈ Γi(l)} is a sequence {j, j + 1, · · · , j + k} for

some j and k. Hence, suppose that x ∈ Γi. Let ρi be the shape of Γi. First, suppose

that ρi = Dl. Then x ∈ slΓi and x ∈ tlΓi. It follows that if i > 0, then x ∈ tlΓi−1,

and if i < l, then x ∈ slΓi+1. Now suppose that πi ̸= Dl. If x ∈ slΓi, then x ∈ tlΓi−1

when i > 0. Furthermore, in this case x /∈ Γj for any j > i. Similarly, if x ∈ tlΓi,
then x ∈ slΓi+1 when i < l. Furthermore, in this case x /∈ Γj, for any j < i. Finally,

suppose that x /∈ slΓi and x /∈ tlΓi. Then, x /∈ Γj for any j ̸= i. Combining these

observations, we find that S must be a sequence {j, j + 1, . . . , j + k}. Consequently,
we have that

π|f{x} = πj ⊙l πj+1 ⊙l · · · πj+k.

This is an (l − 1)-trivial pasting diagram.

We now prove the claim for (l − k − 1)-trivial pasting diagrams by induction on

0 ≤ k ≤ l. We have just proved the base case, when k = 0. Hence, suppose that

k > 0, and that

π = π1 ⊙l−k · · · ⊙l−k πm
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where each πi is (l − k)-trivial. Then, there must be a unique i such that x ∈ Γi.

Consequently, we have that

π|f{x} = πi|f{x}.

However, this is an (l − 1)-trivial pasting diagram by the inductive hypothesis. This

completes the induction. Since every pasting diagram is (−1)-trivial, we have proved
the claim.

Now suppose that f : Γ → ∆ is a π-shaped n-substitution in Mod{l}X, and that

x : A is an l-variable in Γ. Suppose that ∆|f{x} is the context of ∆ induced by π|f{x}.
By the lemma above, we have that

∆|f{x} = ∆1 ⊙l ∆2 ⊙l · · · ⊙l ∆m

for some l-trivial ∆i and some m ≥ 0. For each 1 ≤ i ≤ m, we define substitutions

J+
x,i(f), J

−
x,i(f) : Γ0 ⊕x HA → ∆ so that, for each y ∈ ∆,

(J+
x,i(f))y =

{
J+
x (fy) if dim y > l and tly = tl∆i

fy otherwise

(J−
x,i(f))y =


fy if dim y ≤ l

J−
x (fy) if dim y > l and sly = sl∆i

fy otherwise

Note that tky = tk∆i if and only if y ∈ ∆i if and only if sky = sk∆i. Hence, since

each term in f satisfies the equivariance laws, we obtain:

Lemma 3.4.2.30. For each i, we have that

J+
x,i(f) = J−

x,i(f).

Example 3.4.2.31. Suppose again that f : Γ→ ∆ is the following 1-substitution:

• A A •

• • • •

p p

p p p
f1 f2 f3

Suppose that x : A is the 0-variable in Γ whose type A is labelled in this diagram.

Then,
J+
x,1 = J+

x (f1)⊙0 f2 ⊙0 f3, J−
x,1 = J+

x (f1)⊙0 f2 ⊙0 f3,

J+
x,2 = f1 ⊙0 J

+
x (f2)⊙0 f3, J−

x,2 = f1 ⊙0 J
−
x (f2)⊙0 f3,

J+
x,3 = f1 ⊙0 f2 ⊙0 J

+
x (f3), J−

x,3 = f1 ⊙0 f2 ⊙0 J
−
x (f3).
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Suppose that f : Γ → ∆ and g : ∆ → M are a composable pair Mod{l}X. We

define the module prehomomorphism f ; g by

(f ; g)0 = f0; g0

Our goal now is to show that f ; g is a module homomorphism; that is, f ; g satisfies

the required equivariance laws. Suppose that x is an l-variable in Γ, and write

∆|f{x} = ∆1 ⊙l · · · ⊙l ∆m

where each ∆i is l-trivial. We will prove that f ; g satisfies the required equivariance

laws by induction on m.

Proposition 3.4.2.32. When m = 0, we have that J+
x (f ; g) = J−

x (f ; g).

Proof. First, suppose that m = 0. Then f = [f ′] for some l-term f ′. Consequently,

x ∈ slΓ, and x ∈ tlΓ, and ∆ = sl∆ = tl∆. Hence, by Proposition 3.4.2.24, we have

that
J+
x (f ; g) = ((f ′

0; g0)⊙l Htl(f ;g),x); ρM

= ((f ′
0; g0)⊙l (Hf ′,x;Htlg); ρM

= Hf ′,x; (g0 ⊙l Htlg); ρM

= Hf ′,x; J
+
tl∆(l)(g)

= Hf ′,x; J
−
tl∆(l)(g)

= Hf ′,x; (Hslg ⊙l g0);λM
= ((Hf ′,x;Hslg)⊙l (f ′

0; g0));λM

= (Hsl(f ;g),x ⊙l ((f
′
0; g0));λM

= J−
x (f ; g).

Now suppose that m > 0. Our approach will be as follows:

� Firstly, we will show that

J+
x (f ; g) = J+

x,m(f); g0,

and that

J−
x (f ; g) = J−

x,1(f); g0.

See Lemma 3.4.2.33.
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� Secondly, we will show that

J+
x,m(f); g0 = J−

x,1(f); g0.

See Corollary 3.4.2.36.

Lemma 3.4.2.33. We have that

J+
x (f ; g) = J+

x,m(f); g0,

and

J−
x (f ; g) = J−

x,1(f); g0.

Proof. For any 1 ≤ i ≤ m, we have that tl∆i ∈ tl∆ implies i = m. The converse

holds if and only if x ∈ tlΓ. Hence,

J+
x,m(f) =

{
(f0 ⊕tl∆m Htlf∆m,x

); ρ∆∆m(l) if x ∈ tlΓ
λΓx ; f0 if x /∈ tlΓ

By a similar argument,

J−
x,1(f) =

{
(Hslf,x ⊕sl∆1 Hslf∆1,x

);λ∆∆1(l)
if x ∈ slΓ

ρΓx ; f0 if x /∈ slΓ

It follows immediately that when x /∈ tlΓ, we have that

J+
x (f ; g) = J+

x,m(f); g0,

and when x /∈ slΓ, we have that

J−
x (f ; g) = J−

x,1(f); g0.

On the other hand, when x ∈ tlΓ, we have that

J+
x,m(f); g0 = (f0 ⊕tl∆l

Htlf∆m ,x
); ρ∆tl∆m

; g0

= (f0 ⊕tl∆l
Htlf∆m ,x

); J−
tl∆m

(g).

Similarly, when x /∈ slΓ, we have that

J−
x,1(f); g0 = (f0 ⊕sl∆1 Hslf∆1

,x);λ
∆
sl∆1

; g0

= (f0 ⊕sl∆1 Hslf∆1
,x); J

+
sl∆1

(g).

The result now follows from Lemma 3.4.2.34 below.
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Lemma 3.4.2.34. Suppose that f : Γ → ∆ and g : ∆ → M are terms in Mod{l}X.
Suppose that x is an l-variable x ∈ tlΓ, such that ∆|x = ∆1 ⊙l · · · ⊙l ∆m, where each

∆i is i-trivial, and where m > 0. Then, we have that

J+
x (f ; g) = (f0 ⊕tl∆m Htlf∆m ,x

); J−
tl∆m

(g)

Similarly, for any l-variable x ∈ slΓ, we have that

J−
x (f ; g) = (f0 ⊕sl∆1 Hslf∆1

,x); J
+
sl∆1

(g).

Proof. Will will prove that the above description of J+
x (f ; g) is correct. The descrip-

tion of J−
x (f ; g) follows by a symmetrical argument. Suppose that x ∈ tlΓ. Then

J+
x (f ; g) = ((f0; g0)⊙l Htl(f ;g),x); ρM

= (f0 ⊙l Htlf,x); (g0 ⊙l Htlg); ρM

= (f0 ⊙l Htlf,x); J
+
tl∆

(g)

= (f0 ⊙l Htlf,x); J
−
tl∆

(g)

Let z = tl∆m. Then, for each variable y ∈ ∆, we have that

(f0 ⊙l Htlf,x)y =


(fy)0 ⊙l (rtlΓy

x̃ ;Htlfy) if tly ∈ tl∆ and x ∈ Γy

(fy)0 ⊙l (rtlΓy ;Htlfy) if tly ∈ tl∆ and x /∈ Γy

(fy)0 if dim y ≤ l or tly ̸∈ tl∆

=


(fy)0 ⊙l Htlfy ,x if tly ∈ tl∆ and x ∈ Γy

(fy)0 ⊙l (tlfy; rtl∆y) if tly ∈ tl∆ and x /∈ Γy

(fy)0 if dim y ≤ l or tly ̸∈ tl∆

=


(fy)0 ⊙l Hfz ,x if tly = z

(fy)0; (idy⊙lrtl∆y) if tly ∈ (tl∆)(l) \ {z}
(fy)0 if dim y ≤ l or tly ̸∈ tl∆

Hence for each y ∈ ∆ we define

f ′
y =


(fy)0 ⊙l Hfz ,x if tly = z

(fy)0 if tly ∈ (tl∆)(l) \ {z}
(fy)0 if dim y ≤ l or tly /∈ tl∆

and

ry =


idy⊙l idHtly

if tly = z

idy⊙lrtly if tly ∈ (tl∆)(l) \ {z}
idy if dim y ≤ l or tly /∈ tl∆
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Then, by the analogue of Remark 3.1.2.1 for terms, we have that

(f0 ⊙l Htlf,x) =
⊙
y∈∆

f ′
y; ry

=
⊙
y∈∆

f ′
y;
⊙
y∈∆

ry

= (f0 ⊕z Hfz ,x); r
∆⊙lHtl∆

(tl∆)(l)\z

However, by Proposition 3.4.2.24, we have that

J−
(tl∆)(l)(g) = J−

(tl∆)(l)\z(J
−
z (g))

and so
J+
x (f ; g) = (f0 ⊙l Htlf,x); J

−
tl∆(l)(g)

= (f0 ⊕z Hfz ,x); r
∆⊙lHtl∆l

(tl∆)(l)\z ; J
−
(tl∆)(l)\z(J

−
z (g))

= (f0 ⊕z Hfz ,x); J
−
z (g)

= (f0 ⊕tl∆m Htlf∆m ,x
); J−

tl∆m
(g)

as required.

Lemma 3.4.2.35. Suppose that g : ∆ → M is a term in Mod{l}X. Then, for all

1 ≤ i < l, we have that

J−
x,i+1(f); g0 = J+

x,i(f); g0.

Proof. First, note that since sl∆i+1 = tl∆i, we have that x ∈ slΓi+1 ∩ tlΓi. Let

z = sl∆i+1 = tl∆i. Then, for each variable y : A ∈ ∆, it follows that

(J−
x,i+1(f))y =

{
(Hslfy ,x ⊙l (fy)0);λ∆y(l) if sly = z

(fy)0 if sly ̸= z

(J+
x,i(f))y =

{
((fy)0 ⊙l Htlfy ,x); ρ∆y(l) if tly = z

(fy)0 if tly ̸= z

Let

f ′
y =

{
Hslfy ,x ⊙l (fy)0 if sly = z

(fy)0 if sly ̸= z

=

{
Hfz ,x ⊙l fy if sly = z

fy if sly ̸= z

and

my =

{
λ∆y(l) if sly = z

idA if sly ̸= z
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Then, summing over y ∈ ∆, and applying Remark 3.1.2.1, we find that

J−
x,i+1(f) =

⊙
y∈∆

(J−
x,i+1(f))y

=
⊙
y∈∆

f ′
y;my

=
⊙
y∈∆

f ′
y;
⊙
y∈∆

my

= (f0 ⊕z Hfz ,x);λ
Γ
z .

By a similar argument, we have that

J+
x,i(f) = (f0 ⊕z Hfz ,x); ρ

Γ
z .

It follows that
J−
x,i+1(f); g0 = (f0 ⊕z Hfz ,x);λ

Γ
z ; g0

= (f0 ⊕z Hfz ,x); J
−
z (g0)

= (f0 ⊕z Hfz ,x); J
+
z (g0)

= (f0 ⊕z Hfz ,x); ρ
Γ
z ; g0

= J+
x,i(f); g0

as required.

Corollary 3.4.2.36. We have that

J+
x,m(f); g0 = J−

x,1(f); g0

Proof. Repeatedly apply Lemma 3.4.2.35 and Lemma 3.4.2.30.

We can now finally conclude that n-terms in Mod{l}X can be composed.

Proposition 3.4.2.37. A composite of (n, l)-module homomorphisms is an (n, l)-

module homomorphism.

In other words, we have proved that Mod{l}X is a globular multicategory. We now

describe the homomorphism types of l-types in Mod{l}X. Given an l-type M in

Mod{l}X, the homomorphism type of M in Mod{l}X is defined to be the (l + 1, l)-

module HM . The reflexivity term at M is rM . The unit and associativity laws ensure

that rM is an (l + 1)-term in Mod{l}(X). We define Jx by

Jx(f) = J+
x (f) = J−

x (f),

Composition with rx is a bijection with inverse Jx by the following proposition:
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Proposition 3.4.2.38. Suppose that Γ is a context in Mod{l}X, and that x : A is

an l-variable in Γ. Suppose that f : Γ→ M and g : Γ⊕x HA → M are (n, l)-module

homomorphisms in Mod{l}X. Then, we have that

rΓx ; J
+
x (f) = f,

J+
x (r

Γ
x ; g) = g,

Proof. From the definition of J+
x (f), we have that

rΓx ; J
+
x (f) = f

and so it suffices to prove the second identity. Suppose that (Γ ⊕x HA)|g{x} = Γ1 ⊙l
· · ·⊙lΓm, for some l-trivial Γi, andm ≥ 0. SinceHA is an (l+1)-type in (Γ⊕xHA)|g{x},
we have thatm > 0. Recall that we denote the added variable in Γ⊕xHA byHx : HA,

the source of Hx by x0 : A, and the target of Hx by x1 : A. Since Hx : HA is the

unique variable in Γ⊕x HA with tlHx = x1, and λHA
= mA, we have that

J−
x1
(g) = λΓ⊕xHA

x1
; g = mΓ⊕xHA

Hx
; g.

Similarly, since Hx is the unique variable in Γ⊕xHA with slHx = x0, and ρHA
= mA,

we have that

J+
x0
(g) = ρΓ⊕xHA

x0
; g = mΓ⊕xHA

Hx
; g = J−

x1
(g).

First suppose that x ∈ tlΓ. Then tlΓm = x1. Thus,

tl(r
Γ
x)Γm = (rΓx)tlΓm = (rΓx)x1 = idA .

Hence, Lemma 3.4.2.33 tells us that J+
x (r

Γ
x ; g) = (rΓx ⊕x1 HidA); J

−
x1
(g). Furthermore,

it is easily verified that (rΓx ⊕x1 idHA
) = rΓ⊕xHA

x0
. Hence,

J+
x (r

Γ
x ; g) = (rΓx ⊕x1 HidA); J

−
x1
(g)

= (rΓ⊕xHA
x0

); J−
x1
(g)

= (rΓ⊕xHA
x0

); J+
x0
(g)

= g.

Now suppose that x /∈ tlΓ. Suppose that y : B ∈ Γ, and that tly = x. Then,

ρB; (idB ⊙lrA) = (ρB ⊙l idA); (idB ⊙lrA)

= ρB ⊙l rA
= ((idB ⊙lHA); ρB)⊙l (rA;HA)

= (idB ⊙lHA ⊙l rA); (ρB ⊙l HA)
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However, we have that

ρΓx =
⊙
y:B∈Γ

{
ρB if tly = x

idB otherwise

rΓx =
⊙
y:B∈Γ

{
idB ⊙lrA if tly = x

idB otherwise

Furthermore, the following identities are easily verified:

rΓ⊕xHA
x1

=
⊙
y:B∈Γ

{
idB ⊙l idHA

⊙lrA if tly = x

idB otherwise

ρΓ⊕xHA
x0

=
⊙
y:B∈Γ

{
ρB ⊙l HA if tly = x

idB otherwise

Hence,
J−
x (r

Γ
x ; g) = ρΓx ; r

Γ
x ; g

= rΓ⊕xHA
x1

; ρΓ⊕xHA
x0

; g

= rΓ⊕xHA
x1

; J+
x0
(g)

= rΓ⊕xHA
x1

; J−
x1
(g)

= g

as required.

Hence, Mod{l}X is a globular multicategory with strict homomorphism types. This

assignment extends straightforwardly to the arrows and 2-cells of GlobMult, and in

this way we obtain a strict 2-functor:

Mod{l} : GlobMult −→ GlobMult
{l}
H .

Theorem 3.4.2.39. For each l ≥ 0, the functor Mod{l} is strictly right adjoint to

the functor U
{l}
H : GlobMult

{l}
H → GlobMult that forgets strict homomorphism types

at level l.

GlobMult
{l}
H GlobMult

U
{l}
H

⊥

Mod{l}
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Proof. Suppose that X is a globular multicategory with strict homomorphism types.

Suppose that M is an n-type in X, and f : Γ → M is an n-term in X. We define

the unit ηX : X → Mod{l} U
{l}
H X, for each n-type ηX(M), and each n-term ηX(f) in

Mod{l} U
{l}
H X so that ηX(M)0 = M , and ηX(f)0 = f . The remaining structure is

defined by induction on n. When n < l, we define ηX(M) to be the identity map on

types and terms.

Now suppose that n = l, and suppose that M is an l-type in X. Suppose that

m :M is the unique l-variable in [M ].We define

HηX(M) = HM ,

mηX(m) = Jm(idM).

and

HηX(f) = JΓ(l)(f ; rM).

Now suppose that n > l and that M is an n-type in X. Suppose that m : M is

the unique m-variable in [M ]. Then we define

ληX(M) = Jslm(idM0)

ρηX(M) = Jtlm(idM0)

The laws for homomorphism types at level l, imply that this data satisfy the

required properties, and that ηX is a natural homomorphism that preserves homo-

morphism types at level l.

Suppose that Y is a globular multicategory. Suppose that N is an n-type, and

that g : ∆ → N is an n-term in U
{l}
H Mod{l}Y. The counit ϵY is defined so that

ϵY(N) = N0 and ϵY(g) = g0.

The first identity triangle identity says that, whenever X has homomorphism types

at level l, the composite assignment

U
{l}
H X U

{l}
H Mod{l} U

{l}
H X U

{l}
H X

M (M,HM , . . .) M

U
{l}
H ηX

ϵ
U
{l}
H X

is the identity assignment. The second triangle identity says that, for each globular

multicategory Y, the composite assignment

Mod{l}Y Mod{l} U
{l}
H Mod{l}Y Mod{l}Y

(M,HM , . . .) ((M,HM , . . .), (HM , . . .), . . .) (M,HM , . . .)

η
Mod{l} Y Mod{l} ϵY

is the identity assignment.
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Example 3.4.2.40. These results also hold for n-globular multicategories, for finite

n. Restricting to the case where dimX = 1 and l = 0, we recover Theorem 3.4.0.3.

Proposition 3.4.2.41. Suppose that l′ < l. Then Mod{l} preserves representability

at level l′. Furthermore, if a globular multicategory X is representable up to level

(l + 1), then Mod{l}X is representable up to level l.

Proof. First suppose that X is representable at level l′, for some l′ < l. Suppose

that Γ is an l′-context in Mod{l}X. Suppose that f : Γ → M is an n-term in X.
First suppose that n = l. Then, we can define Hf = f ; rM , and so f can be seen as

an n-term in Mod{l}X. On the other hand, when n > l, the equivariance laws are

vacuously satisfied since Γ does not contain any l-types. Hence, in this case also, f

is an n-term in Mod{l}X. It follows from this analysis that if X is representable at

level l′, then Mod{l}X is representable at level l′.

Now suppose that X is representable up to level (l + 1). Let Γ be an l-context in

Mod{l}X. Then, we define
⊗

Γ by

(
⊗

Γ)0 =
⊗

Γ0, H⊗
Γ =

⊗
HΓ,

and

m⊗
Γ =

⊗
mΓ, r⊗Γ =

⊗
rΓ.

We define the compositor mΓ : Γ→
⊗

Γ by

(mΓ)0 = mΓ0 , HmΓ
= mHΓ

We have that
(mΓ)0; r⊗Γ = mΓ0 ;

⊗
rΓ

= rΓ;mHΓ

= rΓ;HmΓ
,

and
(mΓ)0;m⊗

Γ = mΓ0 ;
⊗

mΓ

= mΓ;mHΓ

= mΓ;HmΓ
.

Hence, mΓ is an l-term in Mod{l}X. It is a compositor of Γ by construction.

Proposition 3.4.2.42. Suppose that l′ < l. Then the functor Mod{l} : GlobMult→
GlobMult preserves coproducts at level l′.
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Proof. Suppose that X has coproducts at level l′. Let {Ai : sA 7→ tA}i∈I be a set

of parallel l-types in Mod{l}X. Since l′ < l, we can define
∐

i∈I AI : sA 7→ tA by

(
∐

i∈I AI)0 =
∐

i∈I(Ai)0. Furthermore, each inclusion ιi : (Ai)0 →
∐

i∈I(Ai)0 defines

an l′-term in Mod{l}X. Suppose that Γ is a π-shaped n-context in Mod{l}X such

that, for some l-variable x in Γ, we have that Γx =
∐

i∈I AI . Suppose that x is not

the source or target of any other variable in Γ. Suppose that B is an n-type, and

that g : sΓ → sB, h : tΓ → tB are term-wise parallel (n − 1)-terms. Suppose that

for each i ∈ I, we have an n-term

fi : Γ[Ai/x] −→ B, sn−1ι
Γ
i ; g −7→ tn−1ι

Γ
i ;h.

We will define a term fI : Γ → B in Mod{l}X such that (fI)0 is the term in X
corresponding to the family {(fi)0}i∈I . When n < l, it is clear that the term fI exists

and satisfies the required universal properties.

Now suppose that n = l. Since l′ < l, we have that

(HΓ)[Ai/x] = HΓ[Ai/x]

Hence, we define HfI : HΓ → HB, fI 7→ fI to be the term in X corresponding to the

family {Hfi}i∈I . It follows that, for each i ∈ I, and for each variable y : C ∈ HΓ,

(mΓ[Ai/x]; ι
HΓ
i )y =


mB if dim y = l

idB if dim y ̸= l and y ̸= x

ιi if dim y ̸= l and y = x

= (ιHΓ
i ;mΓ)y

Hence, for each i ∈ I,

ιHΓ
i ;mΓ;HfI = mΓ[Ai/x]; ι

HΓ
i ;HfI

= mΓ[Ai/x];Hfi

= Hfi ;mB

= ιHΓ ;Hf ;mB.

Thus, mΓ;HfI = HfI ;mB. Similarly, we have that rΓ[Ai/x]; ι
HΓ
i = ιΓi ; rΓ, and this

implies that rΓ;HfI = fI ; rB. The required universal property is now easily verified.

Now suppose that n > l. Since l′ < l, for each l-variable y ∈ Γ, and each i ∈ I,
we have that

ιi; J+
y (fI) = J+

y (ι
i; fi) = J−

y (ι
i; fi) = ιi; J−

y (fI)

Hence J+
y (fI) = J−

y (fI), and so fI is a term in Mod{l}X. The required universal

property follows immediately.
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3.4.3 Composing Level-wise Modules

We now show how we can compose modules construction at each level, in order to

obtain right adjoints to US
H : GlobMultSH → GlobMult, for more general sets S ⊆ ω.

Proposition 3.4.3.1. Suppose that l < j. Then Mod{l} preserves homomorphism

types at level j.

Proof. Suppose that X is a globular multicategory with homomorphism types at level

j. Let M be a j-type. Suppose that m : M is the unique n-variable in [M0]. First

suppose that n = j. Then we define the (j + 1)-type HM in Mod{l}X by:

(HM)0 = HM0 , λlHM
= Jm(λ

l
M ; rM0), ρlHM

= Jm(ρ
l
M ; rM0),

and we define rM by

(rM)0 = rM0 ,

For any j-term f ,we define

(Hf )0 = Hf0 .

For any n > j, and n-term g, we define

Jx(g) = Jx(g0).

The required identities can be verified by plugging in reflexivity terms at levels l and

j, and applying J. For example, we have that

rM ; (idM ⊙lrtlM);λlHM
= (rM ⊙l idtlM); (idM ⊙lrtlM); Jm(λ

l
M ; rM)

= (rM ⊙l rtlM); Jm(λ
l
M ; rM)

= (idM ⊙lrtlM); (rM ⊙l idHM
); Jm(λ

l
M ; rM)

= (idM ⊙lrtlM);λlM ; rM

= rM

= rM ; idHM
,

and so (idM ⊙lrtlM);λlHM
= idHM

.

Corollary 3.4.3.2. Suppose that S ⊆ ω is a finite set. Then, we have an adjunction

GlobMultSH GlobMult

US
H

⊥

ModS
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Proof. Suppose that S = {l1 < l2 < . . . < lm}. Let Gi = GlobMultH
{li,...,lm}. Then

we define ModS to be the following composite:

GlobMult = Gn Gn−1 · · · G0 = GlobMultSH
Mod{lm} Mod{lm−1} Mod{l1}

Remark 3.4.3.3. It follows that a type (or term) in Mod[l] X has the data of a type

(or term) in Mod{i} for all or all 0 ≤ i ≤ l.

In particular, when d = n is finite, and S = [n], we obtain:

Corollary 3.4.3.4. We have an adjunction

n -GlobMultH n -GlobMult

UH

⊥

Modn

Proposition 3.4.3.5. Let S ⊆ [n] be a finite collection of levels. Then the forgetful

functor

US
H : GlobMultSH −→ GlobMult

is monadic and comonadic.

Proof. Since US
H forgets essentially algebraic data, it is clearly conservative. The claim

now follows from the (Cat-enriched) (co)monadicity theorem since US
H has a left and

a right adjoint and since GlobMultSH and GlobMult are locally presentable.

The following proposition allows us to prove the case when S is infinite.

Proposition 3.4.3.6. Suppose that l is finite. Then we have an adjunction:

GlobMult
[l]
H GlobMult

[l−1]
H

U
{l}
H

⊥

Mod{l}

Proof. We have the following commutative triangle:

GlobMult
[l]
H GlobMult

[l−1]
H

GlobMult

U
{l}
H

U
[l]
H U

[l−1]
H
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By Proposition 3.4.3.5, the functor U
[l−1]
H is comonadic, and by Corollary 3.4.3.2, the

functor U
[l]
H has a right adjoint. Furthermore, GlobMult

[l]
H is locally finitely presentable

since it is the category of models of an essentially algebraic theory. Hence, the (Cat-

enriched) adjoint triangle theorem (see [18,33]) applies, and so U
{l}
H has a right adjoint

as required.

Explicitly given a globular multicategory X with homomorphism types at level

j for j ≤ l − 1, the right adjoint Mod{l} : GlobMult[l−1] → GlobMult[l] is defined

so that Mod{l}X is the subobject of Mod[l] U
[l]
HX whose homomorphism type data at

level j agrees with that of X for each j ≤ l − 1.

Corollary 3.4.3.7. Suppose that S ⊆ ω is an infinite set. Then we have an adjunc-

tion

GlobMultSH GlobMult

US
H

⊥

ModS

Proof. Suppose that S = {l0 < . . . < li < . . .}. Let Si = {l0, . . . , li}. First note that

GlobMultSH is the strict 2-limit of the following chain of forgetful functors,

· · · GlobMultH
S1 GlobMultH

S0 GlobMult.
U

S1
H U

S0
H

and that US
H is the coprojection from this limit to GlobMult. By Proposition 3.4.3.6,

each of these forgetful functors is cocontinuous. It now follows that US
H is cocontinu-

ous since a cone in GlobMultH amounts to a sequence of cones in (GlobMultSi
H )i∈N.

Since GlobMultSH and GlobMult are locally presentable, the adjoint functor theorem

implies that US
H has a right adjoint ModS.

In particular, when S = ω, we obtain:

Theorem 3.4.3.8. The forgetful functor UH : GlobMultH → GlobMult has a right

adjoint.

GlobMultH GlobMult

UH

⊥

Mod

In order to describe the modules construction more explicitly, let Li : GlobMult→
GlobMult be the monad U

[i]
HL

[i]
H, and let Mi : GlobMult → GlobMult be the

comonad U
[i]
H Mod[i]. Let β{i+1} be the unit of the adjunction U

{i+1}
H ⊢ L{i+1}

H . We
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have that Li+1 = U
[i]
HU

{i+1}
H L

{i+1}
H L

[i]
H. Hence, we define a natural transformation

ηi : Li ⇒ Li+1 by

Li Li+1.
U

[i]
H β{i+1}L

[i]
H

Let y{i+1} be the counit of the adjunction Mod{i+1} ⊢ U
{i+1}
H . Similarly, we have

that Mi+1 = U
[i]
HU

{i+1}
H Mod{i+1}Mod[i]. Hence, we define a natural transformation

ϵi :Mi+1 ⇒Mi by

Mi+1 Mi.
U

[i]
H y{i+1}L

[i]
H

It follows that ηi is a morphism of monads, and ϵi is a morphism of comonads.

Consider the following diagram of monads:

L−1 L0 L1 · · ·η−1 η0 η1

An algebra ϕ of the algebraic limit, Lω, of this diagram consists of a globular mul-

ticategory with an Li-algebra structure, ϕi, for each i respecting ηi. However, an

algebra of Li is a globular multicategory with homomorphism types at level l for each

l ≤ i. Furthermore, the requirement that ηi ◦ ϕi+1 = ϕi says that, for each l ≤ i, the

homomorphism types at level l chosen by ϕi+1 agree with those chosen by i. Hence,

an algebra for Lω is simply a globular multicategory with homomorphism types, and

the forgetful functor of Lω is UH : GlobMultH → GlobMult. However, for any glob-

ular multicategory X, the free algebra LωX is just the colimit colimi L
iX. Hence, by

adjointness, we have a natural isomorphism

GlobMult(X, UH ModY) ∼= GlobMult(LωX,Y)

= GlobMult(colim
i

LiX,Y)
∼= GlobMult(X, lim

i
MiY)

= GlobMult(X,MωY)

whereMωY = colim
i
MiY is the colimit of the following diagram:

M−1Y M0Y M1Y · · ·ϵ−1 ϵ0 ϵ1

Since this isomorphism is natural in X and Y, we have thatMω ∼= UH Mod.

We refer to an n-type in ModX as an n-module, and an n-term in ModX as a

homomorphism of n-modules. It follows from the description of ModX as a limit,

that an n-module (or homomorphism) has the data of a type (or term) in Mod{i} for

all or all 0 ≤ i ≤ l; that is:
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� Given parallel (n − 1)-modules sM, tM , an n-module M : sM 7→ tM in X
consists of:

– An n-type M0 : (sM)0 7→ (tM)0

– For each j < n, we require n-homomorphisms

λjM : HtnM ⊙j M −→M, λjsM −7→ λjtM ,

ρjM :M ⊙j HtjM −→M, ρjsM −7→ ρjtM

satisfying laws making them compatible with the multiplication of M and

compatible with each other.

– an (n+ 1)-module HM :M 7→M

– an (n+ 1)-homomorphism rM :M → HM , rsM 7→ rtM

– an (n + 1)-homomorphism mM : M ⊙n M 7→ M satisfying associativity

and unit laws

Here we take λjsM = ρjsM = idsM and λjtM = ρjtM = idtM when j = n− 1 and we

make similar definitions for r and m.

� Given an n-context of modules Γ, an n-moduleM and parallel (n−1)-homomorphisms

sf : sΓ → sM and tf : tΓ → tM , an n-homomorphism f : Γ → M, sf 7→ tf

consists of:

– An n-term f0 : Γ→ M, (sf)0 7→ (tf)0 satisfying equivariance laws for all

j < n

– An (n + 1)-homomorphism Hf : Γ → M, f 7→ f which respects the unit

and multiplication homomorphisms of Γ and M

Our decomposition of this construction into level-wise parts shows that this definition

is not circular.

Remark 3.4.3.9. Suppose that l ≥ 0. Suppose that S is a set of levels such that

MinS > l. Then Proposition 3.4.2.41 implies that ModS preserves representability

at level l. Furthermore, if a globular multicategory X is representable up to level

(MinS + 1), then ModS X is representable up to level MinS + 1.
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3.5 Enrichment

3.5.1 Level-wise Enrichment

We can describe a notion of level-wise enrichment by combining the level-wise modules

construction with the level-wise families construction. Recall that for any globular

multicategory X, we define the families construction at level l as follows:

� When n < l, an n-type in Fam{l}X is an n-type in X.

� An l-type in Fam{l}X is a set of l-types {M(ι) | ι ∈ IM} in X.

� When n > l, an n-type M consists of an n-type M(ι, ι′) for each ι ∈ IsnM and

ι′ ∈ ItnM such that when n = l + 1, we have that M(ι, ι′) : snM(ι) 7→ tnM(ι′)

and when n > l + 1, we have that M(ι, ι′) : sM(ι, ι′) 7→ tM(ι, ι′).

� Similarly, when n < l, an n-term in Fam{l}X is an n-term in X and when n ≥ l,

an n-term in Fam{l}X is a family of n-terms of X indexed by a set which depends

only on n-dimensional data.

Definition 3.5.1.1. Let GlobMult
[>l]
H be the category of globular multicategories

with homomorphism types at level j for each j > l. Similarly, let GlobMult
[≥l]
H be

the category of globular multicategories with homomorphism types at level j for each

j ≥ l. Then for each l. we will define a functor El : GlobMult[>l] → GlobMult[≥l]

which enriches at level l. As in the 1-dimensional case, we define:

El = Mod{l} ◦Fam{l}

Unwrapping this definition, we find that an n-type X of EnV consists of:

� A set X0 of n-types in X

� For each pair of objects A,B ∈ X0, an (n+ 1)-type [A,B] : A 7→ B in V

� Composition and unit terms, [A,B] ⊙ [B,C] → [A,C] and [A] → [A,A], satis-

fying associativity and unit laws

Remark 3.5.1.2. Suppose that i < n. Then we have that trnEiX = EitrnX.

Remark 3.5.1.3. Whenever l′ < l, the enrichment functor El preserves representabil-

ity at level l′. This follows from Proposition 2.9.2.7 and Proposition 3.4.2.41.
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Example 3.5.1.4. When X is a virtual double category, a 0-type in E0X is a category

enriched in X, as described by Leinster [31]. Similarly, a 0-term in E0X is a functor

between such categories, as described ibid.

Example 3.5.1.5. Suppose that C is a strict monoidal category, seen as a one-object

2-category. Then E0 Sq C is the virtual double category of categories, and profunctors

enriched in C, described by [17].

Example 3.5.1.6. Suppose that k ≥ 0. We say that a globular multicategory X is

k-terminal when, for all i < k, the category TypeX(i) is the terminal category. Now

suppose that k > 0, and that X is k-terminal. Then Ek−1X is (k−1)-terminal. Every

k-terminal globular multicategory is representable up to level k − 1. Hence, Ek−1X
is representable up to level k− 2. If, moreover, X is representable up to level k, then

Proposition 2.9.2.7 and Proposition 3.4.2.41 imply that Ek−1X is representable up to

level k − 1.

We say that an n-category C is k-terminal, when C has a unique i-cell for all i < k.

It is well known that higher categories of this sort correspond to (n − k)-categories
with a coherent choice of k monoidal structures. In this case, Sq C is a representable

k-terminal (n − 1)-globular multicategory, and so Ek−1 Sq C is a (k − 1)-terminal

n-globular multicategory representable up to level (k − 2).

Definition 3.5.1.7. Let GlobMult⊤k
be the category of k-terminal globular multi-

categories. There is a canonical functor

GlobMult⊤k+1
GlobMult⊤k

shift

such that shiftX = X(⋆, ⋆) where ⋆ is the unique 0-type of X ; that is shiftX forgets

the 0-types and terms of X. An ω-terminal globular multicategory is an object in the

limit of the following diagram:

· · · GlobMult⊤k
· · · GlobMult⊤0 = GlobMultshift shift

This amounts to a choice of k-terminal globular multicategory Xk, for each k ≥ 0, such

that shiftXk+1 = Xk. We denote the 2-category of ω-terminal globular multicategories

by GlobMult⊤ω .

A symmetric monoidal globular multicategory is an ω-terminal globular multicate-

gory such that Xk is representable up to level k, for each k. We denote the 2-category

of symmetric monoidal globular multicategories with chosen compositors and com-

positor preserving homomorphisms by GlobMultSym.
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Example 3.5.1.8. Suppose that C is a symmetric monoidal category. Then, for each

finite k, there is a k-terminal k+ 1-category BkC such that a k-cell of BkC is a 0-cell

of C, and an (k+1)-cell of BC is an 1-cell of C. Hence, we have a symmetric monoidal

globular multicategory V⊗C such that

(V⊗C)k = SqBkC.

Let SymMonCat be the category of symmetric monoidal categories, and strict monoidal

functors. We have defined the objects-part of a strict 2-functor,

V⊗ : SymMonCat −→ GlobMultSym

Conversely, suppose that X is a symmetric monoidal globular multicategory. Let

V⊗X be the category TypeX0(0) = TypeX1(1) = TypeX2(2) = · · · . Let A,B ∈ V⊗X.
Let mA⊙0B : A ⊙0 B → A ⊗0 B be a compositor in X1. Then we define the product

A⊗B to be A⊗0 B. This defines a product functor

−⊗− : V⊗X× V⊗X −→ V⊗X

Since A⊗0B can be seen as the target term of a compositor A⊙kB → A⊗kB in Xk+1

for each k ≥ 0, an Eckmann-Hilton argument implies that this product is symmetric.

Hence, we have defined the objects-part of a strict 2-functor

V⊗ : GlobMultSym −→ SymMonCat .

We have a strict 2-adjunction:

SymMonCat GlobMultSym

V⊗

⊥

V⊗

whose unit is an equivalence.

Example 3.5.1.9. Suppose that X is an ω-terminal globular multicategory. Then,

following Example 3.5.1.6, we can define an ω-terminal globular multicategory EX by

(EX)k = EkXk+1

This assignment defines a functor

GlobMult⊤ω GlobMult⊤ω .
E
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If X is symmetric monoidal, thenEX is also symmetric monoidal. LetE : SymMonCat→
SymMonCat be the enrichment functor on symmetric monoidal categories. Then the

following diagram commutes:

SymMonCat SymMonCat

GlobMultSym GlobMultSym

SymMonCat SymMonCat

E

V

E

V V

V

E

Hence, our notion of enrichment agrees with the usual notion of enrichment of sym-

metric monoidal categories.

3.5.2 Iterated Strict Enrichment

The modules construction is closely connected to the process of iterated enrichment.

In this section, we describe this correspondence, and use it to formalize many of the

previously-mentioned intuitions about the n-modules construction. It is worth point-

ing out that in order to iteratively enrich, we must first shift the level of enrichment:

the collection of categories enriched in “categories enriched in X at level k + 1” with

its monoidal (or multicategory structure) is described by EkEk+1X. More generally,

whenever k + l < n, we define l-fold enrichment at level k to be the composite:

EkEk+1 · · ·Ek+l

Example 3.5.2.1. Suppose that X is an ω-terminal globular multicategory. Then,

(EEX)k = EkEk+1Xk+2

Thus, the need to change level is absent in this case, since it is implicitly handled by

the shift functor. Applying the results of Example 3.5.1.9, we have that

V⊗(EnX) ∼= EnV⊗X, EnC ∼= V⊗EnV⊗C

Hence, our notion of iterated enrichment agrees with the usual notion of iterated

enrichment of symmetric monoidal categories.

Inspecting the description of the families construction above, the following result

becomes apparent:
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Proposition 3.5.2.2. Suppose that l < j. Then, we have that Fam{l} : GlobMult→
GlobMult preserves homomorphism types at level j.

This allows us to describe situations in which families constructions and modules

constructions commute:

Proposition 3.5.2.3. Suppose that i < j. Then the following square commutes up

to natural isomorphism:

GlobMult GlobMult
{j}
H

GlobMult GlobMult
{j}
H

Mod{j}

Fam{i} Fam{i}

Mod{j}

∼=⇑ ϕi,j

Remark 3.5.2.4. Note that in order for this result to hold up to isomorphism, and

not just equivalence, we need to use a definition of Fam{i} which uses a particu-

lar choice of one-element indexing families, and pullbacks, as opposed to allowing

isomorphic indexing families.

Proof. Let n < ω. First suppose that n < i. Then Mod{j}Y(n) = Y(n) ∼=
Fam{i}Y(n) for any globular multicategory Y, and so we have an isomorphism

Mod{j} Fam{i}X(n) ∼= X(n) ∼= Fam{i}Mod{j}X(n).

Now suppose that i ≤ n < j. Then, for any globular multicategory Y, Fam{i}Y(n)
does not depend on any levels of Y above n; that is Fam{i}Y(n) = (Fam{i} trn)Y(n).
Furthermore, trnMod{j}X ∼= X. Hence,

Mod{j} Fam{i}X(n) = Fam{i}X(n)

= Fam{i} trnX(n)
∼= Fam{i} trnMod{j}X(n)

= Fam{i}Mod{j}X(n)

Finally, suppose that j ≤ n. Then an n-type M of Mod{j} Fam{i}X consists of a pair

of sets of i-types {siM(ι) | ι ∈ IsiM}, and {tiM(ι) | ι ∈ ItiM} in X together with, for

each ι ∈ IsiM , ι
′ ∈ ItiM :

� An n-type M(ι, ι′) in X such that siM(ι, ι′) = (siM)(ι), and tiM(ι, ι′) =

(tiM)(ι′),

� Data making M(ι, ι′) an n-type in Mod{j}X
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On the other hand, an n-type in Fam{i}Mod{j}X consists of a pair of sets of i-types

{siM(ι) | ι ∈ IsiM} and {tiM(ι) | ι ∈ ItiM} in Mod{j}X(i) = X(i) together with,

for each ι ∈ IsiM , ι′ ∈ ItiM , an n-type M(ι, ι′) in Mod{j}X. This is exactly the same

data described by an n-type in Mod{j} Fam{i}X. The terms of Mod{j} and Fam{i}

can be compared in a similar manner. These comparisons induce the required natural

isomorphism.

This result implies the following corollary, which allows us to see iterated enrich-

ment as the composite of a families construction with a modules construction:

Corollary 3.5.2.5. We have a natural isomorphism,

EkEk+1 · · ·Ek+l
∼= Mod{k,...,k+l} Fam{k,...,k+l}

Example 3.5.2.6. These results also work for finite n. In this case, we have that

Mod Span(Setn) ∼= Mod[n] Fam[n]
1n
∼= E0E1 · · ·En1.

Hence, the collection of higher modules in Set can be seen as the result of iteratively

enriching starting with the terminal object. Since 1n = V⊗⊤ is symmetric monoidal,

we have that

V⊗En
1 = V⊗En⊤

Thus, the symmetric monoidal category of 0-types in Mod Span(Setn) is the symmet-

ric monoidal category of n-categories.

3.5.3 Infinitely Iterated Enrichment

We now consider the infinitely-iterated enrichment. Let U⨿ : GlobMult⨿ → GlobMult

be the functor forgetting coproducts at all levels. Suppose that n ≥ −1. Let

EnU⨿ = E0 · · ·En : GlobMult⨿ → GlobMult. Then the counits of the adjunctions

defining Fam and Mod induce a canonical natural transformation:

ϵEn : En+1 =⇒ En

In order to make this precise, we define the natural transformation yEn : En+1U⨿ ⇒
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U⨿ to be the following composite:

En+1U⨿

Mod{n+1} U
{n+1}
⨿ Fam{n+1} U

{n+1}
⨿ U

{0,...,n,n+2,...}
⨿

Mod{n+1} U
{n+1}
⨿ U

{0,...,n,n+2,...}
⨿

Mod{n+1} U⨿

U⨿

Mod{n+1} U
{n+1}
⨿ yn+1

⨿ U
{0,...,n,n+2,...}
⨿

yn+1
H U⨿

Then we define ϵEn : E0 · · ·En+1U⨿ ⇒ E0 · · ·EnU⨿ to be E0 · · ·Eny
E
n . Hence,

whenever X is a globular multicategory with colimits, we can consider the limit of

the following diagram:

· · · E2X E1X E0X
ϵE2 ϵE1 ϵE0

We denote this limit by EωX.
Now letMn = U

[n]
H Mod[n] : GlobMult→ GlobMult, and let ϵHi :Mi+1 →Mi be

the transformation which forgets modules data at level n. Let F [n] = U
[n]
⨿ Fam[n] U⨿ :

GlobMult⨿ → GlobMult, and let ϵ⨿n : Fn+1 → Fn be the transformation which

computes coproducts at level n+ 1. Let

Φn : En =⇒ MnFn

be the natural isomorphism induced by Corollary 3.5.2.5. Then by naturality we have

the following result:

Proposition 3.5.3.1. The following square of natural transformations commutes:

En+1U⨿ Mn+1Fn+1

EnU⨿ MnFn
ϵEn

Φn+1

Mnϵ⨿n ◦ϵHn Fn+1

Φn

For any globular multicategory Y, letMωY be the limit of the following diagram

in GlobMult:

· · · M2Y M1Y M0Y
ϵH2 Y ϵH1 Y ϵH0 Y
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Theorem 3.5.3.2. We have a natural isomorphism

Φω : Eω ∼=
=⇒ MωFω ≈ Mod[ω] Fam[ω] U⨿.

Proof. Recall that, for any globular multicategory Y,MωY is the limit of the following

diagram in GlobMult:

· · · M2Y M1Y M0Y
ϵH2 Y ϵH1 Y ϵH0 Y

Similarly, for any globular multicategory with coproducts X, Remark 2.9.3.9 tells us

that FωX is the equivalent to the limit of the following diagram in GlobMult:

· · · F2X F1X F0X
ϵ⨿2 X ϵ⨿1 X ϵ⨿0 X

Now consider the following diagram, whose squares commute by naturality:

· · · M2F0X M1F0X M0F0X

· · · M2F1X M1F1X M0F1X

· · · M2F2X M1F2X M0F2X

· · · ...
...

...

ϵH2 F0 ϵH1 F0 ϵH0 F0

ϵH2 F1 ϵH1 F1

M2ϵ0⨿

ϵH0 F1

M1ϵ0⨿ M0ϵ0⨿

ϵH2 F2 ϵH1 F2

M2ϵ1⨿

ϵH0 F2

M1ϵ1⨿ M0ϵ1⨿

M2ϵ2⨿ M1ϵ2⨿ M0ϵ2⨿

Since eachMn preserves limits, taking the limit of the rows we obtain

· · · M2FωX M1FωX M0FωX
ϵH2 Fω ϵH1 Fω ϵH0 Fω

Consequently, the limit of the whole square is the limit of this diagram, and this is

MωFωX. On the other hand, the limit of the whole square must be the limit of the

diagonal,

· · · M2F2 M1F1 M0F0.
M2ϵ2⨿◦ϵ2F2 M1ϵ1⨿◦ϵ1F1 M0ϵ0⨿◦ϵ0F0

Applying, Proposition 3.5.3.1, this diagram is isomorphic to

· · · E2X E1X E0X,
ϵE2 ϵE1 ϵE0

and the limit of this diagram is EωX by definition. Hence, we have constructed a

natural isomorphism Φω : Eω ∼=MωFω as required.
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Example 3.5.3.3. Suppose that X = 1. Then Eω
1 is the limit of the following

diagram:

· · · E1
1 E0

1 1
ϵE1 (1) ϵE0 (1) !

However, Theorem 3.5.3.2 implies that Eω
1 ≈ ModSpanSet.Thus, in the spirit of [20],

we have exhibited Mod SpanSet as the canonical limit of a process of iterated enrich-

ment. In fact, we can make a precise comparison with the description of Strω -Cat

found ibid. Let 1Sym be the terminal symmetric monoidal globular multicategory.

Then consider the limit Eω
1Sym of the following diagram in GlobMultSym:

· · · E2
1Sym E1Sym 1Sym,

E2! E! ! (†)

Applying the functor (−)0 : GlobMultSym → GlobMult, we obtain precisely the

above globular multicategory, and taking the limit we find that (Eω
1Sym)0 = Eω

1.

Thus,

(Eω
1Sym)0 = Eω

1 ≈ ModSpanSet

On the other hand, since V⊗1 = ⊤, we have an isomorphism of diagrams:

· · · V⊗E2
1Sym V⊗E1

1Sym V⊗E0
1Sym

· · · E2⊤ E1⊤ E0⊤

∼= ∼= ∼= ∼=

This induces an isomorphism between the limits of the top and bottom rows in

SymMonCat. By the results of [20], the limit of the bottom row is the symmet-

ric monoidal category of strict ω-omega categories. Since V⊗ is a right adjoint, it

preserves limits. Hence, the limit of the top row is V⊗Eω
1Sym. Thus,

V⊗Eω
1Sym ≈ Strω -Cat.

Example 3.5.3.4. Both Mod{i} and Fam{i} preserve limits of ω-length chains. It

follows that E preserves limits of these chains. Hence EEω
1Sym

∼= Eω
1Sym. Combing

this observation with Remark 3.5.1.2, we have that

tr1ModSpanSet ≈ tr1(E
ω
1Sym)0

∼= tr1(EE
ω
1Sym)0

∼= tr1E0(E
ω
1Sym)1

∼= E0tr1(E
ω
1Sym)1
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However, considering the definition of V⊗ in Example 3.5.1.8, for any symmetric

monoidal globular multicategory X, we have that tr1(X)1 = SqV⊗X. (Here we view

V⊗ as a 1-object 2-category.) Hence,

tr1ModSpanSet ≈ E0 SqV⊗Eω
1Sym ≈ E0 Sq Strω -Cat.

Hence, by Example 3.5.1.5, we have that tr1ModSpanSet is equivalent to the virtual

double category of categories, functors, profunctors, and transformations enriched in

strict ω-categories described by [17].
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Chapter 4

Fibrational and Weak
Homomorphism Types

In this chapter we weaken the rules defining strict homomorphism types in order to

define two different notions of homomorphism type: fibrational homomorphism types,

and weak homomorphism types. While types in globular multicategories with strict

homomorphism types behave like strict higher categories, types in globular multi-

categories with weak or fibrational homomorphism types behave like weak higher

categories. We show how models of dependent type theory with identity types in-

duce globular multicategories with fibrational homomorphism types, while models of

type theory with path types (that is propositional identity types) induce globular

multicategories with weak homomorphism types.

4.1 Pre-homomorphism Types

We first describe a common structure underlying globular multicategories with strict,

fibrational, and weak homomorphism types.

Definition 4.1.0.1. We say that a globular multicategory has pre-homomorphism

types when its underlying globular multigraph is reflexive and we have the following

structure:

� For each n-term f : Γ → M, sf 7→ tf and each (n − 1)-variable x : A in Γ a

J-term

Jx(f) : Γ⊕x HA −→M, sf −7→ tf.

� Suppose that 0 < k < n. Let f : Γ→M be an n-term. Then for each k-variable

130



x : A in Γ and any term-wise parallel (n− 1)-terms

js : sΓ⊕x HA −→ sM

jt : tΓ⊕x HA −→ tM

such that
rx; js = sf

rx; jt = tf

we have a J-term

J js,jtx (f) : Γ⊕x HA −→M, js −7→ jt.

We denote the category of globular multicategories with pre-homomorphism types by

GlobMultPreH .

Example 4.1.0.2. Every globular multicategory with strict homomorphism types

has pre-homomorphism types.

Remark 4.1.0.3. An algebraic pre-equivalence of globular sets is a map of globular

sets, f : X → Y , together with:

� For each 0-cell a ∈ Y (0), a 0-cell jf (a) ∈ X(0).

� For each n ≥ 0, each pair of parallel n-cells a, b ∈ X(n), and each (n + 1)-cell

c ∈ Y (n+1), such that sc = f(a) and tc = f(b), an (n+1)-cell ja,bf (c) such that

sja,b(c) = a and tja,b(c) = b.

Let X be a reflexive globular multicategory. Suppose that Γ is an n-context, A

is an n-type A, g : sΓ → sA and h : tΓ → tA are term-wise parallel (n − 1)-terms.

Then, we define the globular set

[[Γ −→M, g −7→ h]]

so that

[[Γ −→M, g −7→ h]](0) = [Γ −→M, g −7→ h],

[[Γ −→M, g −7→ h]](1) = {f : Γ −→ HM | sn−1f = g, tn−1f = h},

[[Γ −→M, g −7→ h]](2) = {f : Γ→ H2
M | sn−1f = g, tn−1f = h},

...
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Example 4.1.0.4. Suppose that A and B are 0-types. Then, the following three

diagrams depict a typical 0-cell f ∈ [[A → B, ⋆ 7→ ⋆]], a 1-cell ϕ such that sϕ = f

and tϕ = g, and a 2-cell θ such that sθ = ϕ and tθ = ψ respectively:

A

B

f

A

B B

f g

HB
p

ϕ

A

B

B

f

g

HBp

HB

p

ϕ

HHB

p

ψ θ g

Example 4.1.0.5. Suppose that M, N and O are 1-types. Then, the following three

diagrams depict a typical 0-cell f ∈ [[M ⊙0 N → O, h 7→ i]], a 1-cell ϕ such that

sϕ = f and tϕ = g, and a 2-cell θ such that sθ = ϕ and tθ = ψ respectively:

• • •

• •

Mp Np

O
p

h if

•

•

• •

•

Mp
Np

Op

h

i

O
p

f

g

HO

p

ϕ

•

•

• •

•

Mp
Np

p

h

i
p

HO p

HO

p

ϕ

HHOp

ψθ

Each n-substitution r : ∆→ Γ induces a composition map

[[Γ −→ A, g −7→ h]] [[∆ −→ A, sr; g −7→ tr;h]].
r;−

Let S be a set of types in X such that, for each m-type in S, we have that m ≥ n.

To give a pre-representation structure on r relative to S is to give, for each m ≥ n,

each m-type M in S, and each pair of term-wise parallel (m − 1)-terms g : sΓ →
sM, h : tΓ → tM , a choice of algebraic pre-equivalence structure on the map r;−.
When S is the set of all m-types in X, for m ≥ n, we omit the “relative to” part of

this definition. When S = {M} is a singleton, we will speak of (pre)-representations

relative to M .

It follows that to equip a reflexive globular multicategory with pre-homomorphism

types is to give, for each k < n, each n-context Γ, and each k-variable x : A in Γ, a

pre-representation structure for the reflexivity substitution rΓx : Γ⊕x HA → Γ.

4.1.1 ω-Precategories

Globular multicategories with pre-homomorphism types already have enough struc-

ture to endow collections of terms with notions composition and unit. However, this

data need not be coherent. We follow [13] and make the following definition:
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Definition 4.1.1.1. An ω-precategory is a globular set X together with

� A composition operation − ◦ − : X(n) ×X(n−1) X(n) → X(n), allowing us to

compose parallel n-terms, such that whenever ϕ, ψ ∈ Xn and tϕ = sψ, we have

that s(ϕ ◦ ψ) = sϕ and t(ϕ ◦ ψ) = tψ.

� An identity operation id : X(n)→ X(n+ 1) such that s idf = t idf = f

A homomorphism of ω-precategories is a map of globular sets preserving the compo-

sition and identity operations.

Definition 4.1.1.2. Suppose that f, g are parallel n-cells in a globular set X. Then

a transformation ϕ : f → g is an (n+ 1)-cell ϕ in X such that sϕ = f , and tϕ = g.

Suppose that X is a reflexive globular multicategory. Suppose that f, g : Γ →
A, sf 7→ tf are parallel n-terms in X. Then a transformation ϕ : f → g is a term

ϕ : Γ→ HA, f 7→ g; that is, a 1-cell in [[Γ→ A, sf 7→ tf ]].

Definition 4.1.1.3. Suppose that X is a globular multicategory with pre-homomorphism

types. Suppose that M is an n-type in X, and that Hx : HA is in the canonical n-

variable in the n-context [HA]. Suppose that x1 = tHx. Then we define

mA = Jx1(idHA
) : HA ⊙n HA −→ HA, idA −7→ idA .

WhenM : A 7→ B is an n-type, and m :M is the unique n-variable in [M ], we define

λM = Jsm(idM), ρM = Jtm(idM).

Definition 4.1.1.4. Suppose that ϕ : f → g and ψ : g → h are transformations

between n-terms in globular multicategory with pre-homomorphism types X. Then

we define the composite ϕ ◦ ψ : f → h by

ϕ ◦ ψ = (ϕ⊙n ψ);mA.

We define the unit idf of a term f : Γ→ A, sf 7→ tf by

idf = f ; rA.

Thus, we have equipped [[Γ→ A, sf 7→ tf ]] with the structure of an ω-precategory.

Definition 4.1.1.5. Suppose that ϕ : f → f ′. Then, given a term g : Γ→M, f ′ 7→
tg, we define the composite

ϕ ◦ g : f −7→ tg
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to be (ϕ⊙n g);λM . Similarly, given h : Γ→M, sh 7→ f , we define

h ◦ ϕ : sh −7→ f ′

to be (g ⊙n ϕ); ρM .

Example 4.1.1.6. Suppose that a : ∆ → Γ, sa 7→ ta is a substitution in X. Then

it follows that the composition operation

[[Γ −→ A, g −7→ h]] [[∆ −→ A, sa; g −7→ ta;h]].
a;−

is a homomorphism of ω-precategories

This ω-precategory structure allows us to define a notion of equivalence between

n-terms in X. Indeed, there are a number of good candidates for the notion of equiv-

alence. See [13] where two different notions are compared, and see also [53][§4] where

the similar problem of defining equivalences in homotopy type theory is considered.

We will adapt the bi-invertible maps of the latter source to our setting. This notion

is studied in [39].

Definition 4.1.1.7. We define equivalences between parallel n-cells coinductively.

Suppose that f, g are parallel n-cells in an ω-precategory. Then an equivalence

ϕ : f ≈ g

consists of a transformation ϕ : f → g, together with a pair of transformations

ϕL, ϕR : g → f , and equivalences between (n+ 1)-terms:

ϕL ◦ ϕ ≈ idg, ϕ ◦ ϕR ≈ idf .

Proposition 4.1.1.8. Whenever F : X → Y is a homomorphism of ω-precategories,

and f, g ∈ X(k) are parallel cells, we have that f ≈ g =⇒ F (f) ≈ F (g).

Proof. This follows from a straightforward coinduction.

Example 4.1.1.9. Suppose that f ≈ g : Γ→ A are equivalent n-terms in a globular

multicategory with pre-homomorphism types. Suppose that a : ∆ → Γ is an n-

substitution. Then by Proposition 4.1.1.8 applied to a;−, we have that a; f ≈ a; g.

Definition 4.1.1.10. We say that an ω-precategory is idempotent if, for any n-cell

f , we have that

idf ◦ idf ≈ idf .
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Example 4.1.1.11. Suppose that X is an idempotent ω-precategory, and that f ∈
X(k). Then, since,

idf ◦ idf ≈ idf

we have that f ≈ f .

Definition 4.1.1.12. We say that a globular multicategory X has idempotent pre-

homomorphism types when, for any n-type A, we have that

rA ◦ rA ≈ rA.

Remark 4.1.1.13. Since for any n-term f , we have that idf = f ; rA, pre-homomorphism

types are idempotent exactly when, for all f ,

idf ◦ idf ≈ idf .

Thus, X has idempotent pre-homomorphism types if and only if for any n-context Γ,

any n-type A, and any term-wise parallel (n−1)-terms g : sΓ→ sA and h : tΓ→ tA,

the ω-precategory.

[[Γ −→ A, g −7→ h]]

is idempotent.

Definition 4.1.1.14. A pre-equivalence between ω-precategories is a homomorphism

with the structure of a pre-equivalence between their underlying globular sets.

Remark 4.1.1.15. We say that an pre-equivalence is an algebraic acyclic fibration

when additionally:

� For each 0-cell a ∈ Y (0), we have that

f(j(a)) = a,

� For each n ≥ 0, each pair of parallel n-cells g, h ∈ X(n), and each (n + 1)-cell

c ∈ Y (n+ 1), such that sc = f(g) and tc = f(h), we have that

f(jg,h(c)) = c.

If, furthermore, the choices defining an algebraic acyclic fibration are unique, then it

follows that f is a level-wise bijection; that is, an isomorphism of globular sets.

Definition 4.1.1.16. An algebraic weak equivalence of ω-precategories is a pre-

equivalence F : X → Y together with the following data:
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� For each 0-cell f in Y (0), an equivalence F (j(f)) ≈ f

� For each n > 0, each parallel (n− 1)-cells g, h ∈ X(n− 1), and each f ∈ Y (n)

such that F (g) = sf and F (h) = tf , an equivalence

νg,hF (f) : F (jg,hF (f)) ≈ f

We say that a homomorphism F : X → Y is a weak equivalence when it can be

equipped with the structure of an algebraic weak equivalence.

Thus, a homomorphism of ω-precategories is a weak equivalence when it is, in a

precise sense, essentially surjective at all levels. The following propositions immedi-

ately follow from this definition:

Example 4.1.1.17. Whenever X is idempotent, Example 4.1.1.11 implies that the

identity homomorphism idX : X → X is a weak equivalence.

Proposition 4.1.1.18. Weak equivalences are closed under composition.

Proof. This follows from Proposition 4.1.1.8.

Proposition 4.1.1.19. Whenever F : X → Y is a weak equivalence and F (f) ≈ F (g)

in Y , we have that f ≈ g in X.

Proof. Suppose that we have an equivalence between n-cells ϕ : F (f) ≈ F (g). Then

we have

jf,gF (ϕ) : f −→ g, jg,fF (ϕL) : g −→ f, jg,fF (ϕR) : g −→ f.

We have that
F (jg,fF (ϕL) ◦ jf,gF (ϕ)) = F (jg,fF (ϕL)) ◦ F (jf,gF (ϕ))

= ϕL ◦ ϕ

≈ idg,

and, by a similar argument, F (jg,fF (ϕ) ◦ jf,gF (ϕR)) ≈ idf . Since these are equivalences

of (n+ 1)-cells in Y, the result now follows by coinduction.
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4.2 Definition

We now describe two weakly coherent notions of homomorphism type.

Definition 4.2.0.1. We say that a globular multicategory has fibrational homomor-

phism types when it has pre-homomorphism types such that:

� For each n-term f : Γ→ A and each (n− 1)-variable x, we have that

rx; Jx(f) = f.

� Suppose that 0 < k < n. Let f : Γ→M be an n-term. Then for each k-variable

x : A in Γ and any term-wise parallel g : sΓ⊕x HA → sM, h : tΓ⊕x HA → tM

such that rx; g = sf, rx;h = tf , we have that

rx; J
g,h
x (f) = f.

We denote the category of globular multicategories with fibrational homomorphism

types by GlobMultFibH .

Definition 4.2.0.2. A globular multicategory with weak homomorphism types is a

globular multicategory with pre-homomorphism types, together with the following

data:

� For each n-term f : Γ→ A and each (n−1)-variable x, we require an equivalence

νx(f) : rx; Jx(f) ≈ f.

� Suppose that 0 < k < n. Let f : Γ→M be an n-term. Then, for each k-variable

x : A in Γ and any term-wise parallel g : sΓ⊕x HA → sM, h : tΓ⊕x HA → tM

such that rx; g = sf, rx;h = tf , we require an equivalence

νg,hx (f) : rx; J
g,h
x (f) ≈ f.

We denote the category of globular multicategories with weak homomorphism types

by GlobMultWk
H .

Remark 4.2.0.3. Suppose that r : ∆ → Γ is a substitution in a globular multicat-

egory with pre-homomorphism types X. Let S be a set of types in X such that, for

each m-type in S, m ≥ n. Recall that a pre-representation structure on r relative

to S is a choice, for each m ≥ n, each m-type M in S, and each pair of term-wise
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parallel (m − 1)-terms g : sΓ → sM, h : tΓ → tM , of an algebraic pre-equivalence

structure on the map

[[Γ −→M, g −7→ h]] [[∆ −→M, sr; g −7→ tr;h]].
r;−

A fibrational representation structure on r relative to S is a pre-representation struc-

ture on r whose pre-equivalences are algebraic acyclic fibrations. A weak representa-

tion structure on r relative to S is data making these pre-equivalences algebraic weak

equivalences.

Recall that to equip a reflexive globular multicategory with pre-homomorphism

types is to give, for each k < n, each n-context Γ, and each k-variable x : A in Γ, a pre-

representation structure for the reflexivity substitution rΓx : Γ⊕x HA → Γ. It follows

that a choice of pre-homomorphism types is a choice of fibrational homomorphism

types if these pre-representations are fibrational representations. Furthermore, to give

a choice of pre-homomorphism types the structure of weak homomorphism types is

to choose data making these pre-representations weak representations.

Remark 4.2.0.4. We say that a fibrational representation on r is strict, when the

choices defining the associated algebraic acyclic fibrations are unique. In this case,

each map

[[Γ −→ A, g −7→ h]] [[∆ −→ A, sr; g −7→ tr;h]].
r;−

is an isomorphism of globular sets and, furthermore, the pre-equivalence j defines the

inverse of this map. It follows that a substitution has a (necessarily unique) strict

representation structure if and only if it is strictly representing.

4.2.1 Examples

Example 4.2.1.1. Strict homomorphism types are fibrational homomorphism types.

In fact, a globular multicategory with fibrational homomorphism types has strict

homomorphism types if and only if for any parallel terms f and f ′ we have that

rx; f = rx; f
′ =⇒ f = f ′.

Example 4.2.1.2. Suppose that X has fibrational homomorphism types. Then, X
has weak homomorphism types.
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Example 4.2.1.3. Recall that every type theory, T , induces a globular multicategory

GT (T ). When T is equipped with identity types, the identity types, reflexivity terms

and the computation rules for these types in T equip the globular GT (T ) with fibra-

tional homomorphism types. When T is equipped with path types, the path types,

reflexivity terms and the computation rules for these types in T equip the globular

GT (T ) with weak homomorphism types. We will make this precise in Section 4.3

below.

Example 4.2.1.4. Similar definitions work for the finite case. In the 1-dimensional

case strict, fibrational, and weak homomorphism types all coincide.

Example 4.2.1.5. Suppose that P is a globular operad with a choice of contraction.

Then P can be equipped with pre-homomorphism types as follows:

� For each type n, we define Hn = n+ 1. We define rn = lid
n,idn

n .

� For each n-term f : π → n, sf 7→ tf , and each variable x : A ∈ π(n − 1), we

define

Jx(f) = lsf,stπ⊕xHA
: π ⊕x HA −→ n, sf −7→ tf.

Note that rx; Jx(f) : π → n, sf 7→ tf is parallel to f .

� For each k < n − 1, each n-term f : π → n, sf 7→ tf , each variable x ∈ π(k),
and each pair of term-wise parallel (n − 1)-terms g : π∂ ⊕x HA → n − 1 and

h : π∂ ⊕x HA → n− 1 such that rx; g = sf and rx;h = tf , we define

Jg,hx (f) = lg,hπ⊕xHA
: π ⊕x HA −→ n, g −7→ h.

Note that rx; J
g,h
x (f) : π → n, sf 7→ tf is parallel to f .

These data induce weak homomorphism types by the Lemma 4.2.1.6 below.

Lemma 4.2.1.6. Suppose that P is a globular operad with a choice of contraction.

Suppose that f, g : π → n are parallel n-terms in P. Then f ≈ g.

Proof. We define ϕ : f → g, and ψ : g → f by

ϕ = lf,gπ , ψ = lg,f .

Then the (n+ 1)-term ψ ◦ ϕ : π −→ n+ 1, g −7→ g is parallel to idg. Similarly, the

(n+ 1)-term ϕ ◦ ψ is parallel to idf . Hence, the result follows by coinduction.
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Proposition 4.2.1.7. The forgetful functor UH : GlobMultWk
H → GlobMult creates

pullbacks.

Proof. Suppose that we have a pullback diagram

X×Z Y X

Y Z

πX

πY F

G

in GlobMult such that X,Y and Z are globular multicategories with weak homomor-

phism types, and F and G preserve this data. Then to define a type (or term) A in

X×Z Y is to define a type (or term) πXA in X, and a type (or term) πYA in Y such

that FπXA = GπYA. Since F and G preserve weak homomorphism types, this allows

us to construct weak homomorphism types for X×Z Y. For example, for each type A

in X ×Z Y. we define HA : A 7→ A to be the unique type such that πXHA = HπXA,

and πYHA = HπYA. In fact, given this choice of weak homomorphism types, πX

and πY preserve weak homomorphism types. This property uniquely characterises

this choice of weak homomorphism types. Furthermore, the corresponding square in

GlobMultWk
H is clearly a pullback square.

Corollary 4.2.1.8. Discrete opfibrations reflect weak homomorphism types.

Proof. Recall that the globular multicategory of pointed sets SpanSet⋆ has strict

homomorphism types, and that the universal discrete opfibration π⋆ : SpanSet⋆ →
SpanSet preserves strict homomorphism types. Up to size constraints, every discrete

opfibration can be described as a pullback πF as in the diagram below:

el(F) SpanSet⋆

X SpanSet

πF

⌟
π⋆

F

Suppose that X has weak homomorphism types. Then Proposition 4.2.1.7 implies

that el(F) has weak homomorphism types, and that πF preserves this data.

Corollary 4.2.1.9. Whenever C : P→ SpanSet is a weak higher category parametrized

by a contractible globular operad, the globular multicategory of elements el C has weak

homomorphism types.

Proposition 4.2.1.10. Suppose that P is a normalised contractible globular operad

with strict composition along 0-types, with a choice of contraction. Suppose that

C : P → SpanSet is a weak higher category parametrized by P. Then, the vertical

globular multicategory V(C) has weak homomorphism types.
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Proof. Choose weak homomorphism types for P using Example 4.2.1.5. For each

n-type Hn
A in V(C), we define HHn

A
= Hn+1

A . We define rHn
A
: Hn

A → Hn+1
A so that

rHn
A
= F(cn+2

0 )(Ā),

orHn
A
= rn+1 : n+ 1 −→ n+ 2, idn+1 −7→ idn+1 .

Suppose that π is an n-pasting diagram, and that x ∈ π(k) for some k < n. Then

Σ(π ⊕x H) = (Σπ) ⊕x H. Note that this is a slight abuse of notation since x is a

k-variable in π on the left-hand side, and a (k + 1)-variable in Σπ on the right-hand

side. Suppose that f : Γ → B is a π-shaped n-term in V(C). Suppose that Γ is

A-simple, and that x : HkA is a k-term in Γ for some k < n. When k = n − 1, we

define Jx(f) by

Jx(f) = f, oJx(f) = Jx(of ).

Suppose that k < n − 1, and that g : sΓ ⊕x HA → sM and h : tΓ ⊕x HA → tM are

term-wise parallel (n− 1)-terms in V(C) such that rx; g = sf and rx;h = tf . Then

osf = orx;g = orx ;og, otf = orx;h = orx ;oh.

Hence, we define Jg,hx by

Jg,hx (f) = f, oJg,hx (f) = Jog ,oh
x (of ).

The laws for weak homomorphism types are now satisfied because they are satisfied

in P.

4.3 Homomorphism Types and Two-sided Factori-

sations

4.3.1 Two-sided Factorisations

Let C be a category with pullbacks, and let F be a collection of spans in C. We

define Span(C,F) to be the subobject of Span C such that an n-type M : A 7→ B is

in Span(C,F) when the span M is in F , and whose n-terms are terms in Span(C,F)
between these spans. We will now describe the relationship between equipping such a

globular multicategory with homomorphism types and a notion of two-sided factori-

sation.

141



Definition 4.3.1.1 ( [37]). A two-sided factorisation of a span

X

A B

f g

in C consists of a factorisation

X

M

A B

λ
f g

ρ0(f,g) ρ1(f,g)

We will follow North [37], and refer to diagrams of this shape as sprouts.

Remark 4.3.1.2. Suppose that f : X → Y is an arrow in the slice category C/Z.
Then, to give a factorisation of f in C/Z is to give a factorisation of f in C. The

analogous statement does not hold for two-sided factorisation systems. Suppose that

f, g : X → A,B is a span in C/C ×D. Then to give a factorisation of M in C/C ×D
is to give λ, ρ0(f, g), ρ1(f, g) making the following diagram commute:

X

M

A B

C D

λ
f g

ρ0(f,g) ρ1(f,g)

h

i

j

k

However, a factorisation of M in C makes the top triangles commute, but does not

guarantee that the bottom rectangles commute. However, when λ is a monomorphism

this subtlety disappears; this is the case in many naturally occurring examples where

λ is required to be some sort of cofibration.

Remark 4.3.1.3. Suppose that n ≥ 0 and let A,B : C 7→ D be parallel n-types in

Span C. Let f, g : X ⇒ A,B be term-wise parallel n-terms. First suppose that n = 0.
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Then f, g amounts to a span in C, and to give a two-sided factorisation of this span

is to give a 1-term λ : X →M, f 7→ g,

X X

A B

f ⇓ λ g

M

in Span C, filling the diagram above.

Now suppose that n > 0. Then, by Example 2.4.0.3, the span f, g corresponds to

a span in the slice category C/C⊗n−1D. Hence, to give a factorisation of this span is

to give a 1-term λ : X → M, f 7→ g in Span(C/C⊗n−1D), and this is the same as an

(n+ 1)-term λ : X →M, f 7→ g in Span C.

Remark 4.3.1.4. Suppose that C has finite limits. Suppose that n ≥ 0 and let

A,B : C 7→ D be parallel n-types in Span C as above. Let f, g be a span in the slice

category C/C⊗n−1D. Then to give a factorisation of f, g in C/C ⊗n−1 D, it suffices to

give a factorisation of f, g in C/C × D. This follows from the fact that the whole

diagram below commutes if and only if the two upper rectangles commute and the

two lower rectangles commute.

M

A B

C D

E F

ρ0(f,g) ρ1(f,g)

h

i

j

k

Definition 4.3.1.5. Suppose that we have a sprout

C

M

A B

c

a b

together with a span f, g : X ⇒ Y,B, and a commutative diagram of solid arrows of
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the following form:

C X

M

A,B Y, Z

m

x

f g

a b

l

y

z

A pre-filler is a dashed arrow l making the bottom square commute. We say that l is

a filler when it also makes the top triangle commute. We say that a sprout (pre-)lifts

against a span, when every commutative diagram of this form has a (pre-)filler.

Remark 4.3.1.6. The notion of lifting a sprout against a span is exactly the notion

described in [37]. Our notion of pre-filler is a two-sided generalization of the lower

fillers described in [10,55].

Remark 4.3.1.7. Translating this definition into a statement about Span C we find

that a 1-term
C C

A B

a ⇓ r b

M

pre-lifts against a 1-type X : Y 7→ Z when for any 0-terms y : A → Y z : B → Z

and 1-term
C C

Y Z

a;y ⇓ x b;z

X

there is a 1-term l :M → X, y 7→ z.

A B

Y Z

M

y ⇓ l z

X

This pre-lift is a lift when

C C

A B

Y Z

a ⇓ r b

M

y ⇓ l z

X

=
C C

Y Z

a;y ⇓ x b;z

X
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In other words, to give a choice of fillers witnessing that r pre-lifts against X is to

give a pre-representation of r relative to X. Furthermore, these pre-lifts are lifts if

and only if this pre-representation is a fibrational representation.

Now suppose that 1 < n < m, and that we have an n-term r : C →M, a 7→ b and

an m-type X : Y 7→ Z where Y, Z : O 7→ P . Then to give a pre-representation of r

against X is to give a pre-lift of the sprout r relative to the span X in C/O ⊗n−1 P .

Such a term exists when, for any parallel m-terms y : A→ Y , z : B → Z, we have a

filler
C X

M

A,B Y, Z

O, P

r

x

f g

l

y

z

in C. However, any pre-filler of the top part of the diagram in C satisfies the commu-

tativity conditions relating l to O and P automatically, and so defines a pre-filler in

C/O⊗n−1 P . Hence, to give a pre-representation of r against X is to give a lift of the

sprout r relative to the span X in C. Similarly, to give a fibrational representation of

r against X is to give a lift of the sprout r relative to the span X in C.

Definition 4.3.1.8. Consider a diagram of the form

C X

M

A,B Y, Z

m

x

f g

a b

l

y

z

That is a term
C C

A B

Y Z

a ⇓ m b

M

y ⇓ l z

X

We say that l is a weak filler, when m; l ≈ x in Span(C,F). A weak lift structure on

a pre-lift is a choice of weak fillers for each pre-filler. It follows that to give a weak
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lift of a sprout r against a span X in C is to give a weak representation of r against

X in Span(C,F).

4.3.2 Homomorphism Type Categories

It is well known that type theories with identity types correspond to categories with

classes of maps satisfying suitable factorisation properties. For example, van den

Berg and Garner [54] describe a notion of identity type category and discuss how

these objects can constructed from suitable type theories. Ibid. the authors use these

data to describe the weak ω-groupoid structure of the towers of identity types in a

type theory. A similar comparison is given in [10, 55], where type theories with path

types are compared to path categories. We now describe two-sided analogues of these

notions, and show how these give rise to globular multicategories with fibrational and

weak homomorphism types respectively.

Definition 4.3.2.1. Let C be a category with finite limits. We say that C is a

pre-homomorphism type category when it is equipped with:

� a class F of spans called two-sided fibrations

� a class R of 1-terms in Span1(C) called representors.

such that the following conditions hold:

� Identities Identity terms are representors.

� Composition of fibrations: Whenever M : A 7→ B and N : B 7→ C are

two-sided fibrations, their composite M ⊗0 N is a two-sided fibration.

� Composition of representors Whenever r : M → M ′ and s : N → N ′ are

representors such that r : f 7→ g and s : g 7→ h, their composite r ⊗0 s :

M ⊗0 N 7→M ′ ⊙N ′ is a representor.

� Pre-Homomorphism Types: For each two-sided fibration M : A 7→ B,

the trivial span M : M 7→ M factorises in C/A×B into a sprout rM : M →
HM , idM 7→ idM such that rM is a representor and HM is a two-sided fibration.

� Pre-Lifting: Whenever r : M → N is a representor and O is a two-sided

fibration, we have a pre-lift liftrO of r against O.

Remark 4.3.2.2. The Composition of representors property is called the 2-sided

Frobenius condition in [37].
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Proposition 4.3.2.3. Suppose that (C,F ,R) is a category with pre-homomorphism

types. Then the homomorphism types of C correspond to pre-homomorphism types in

Span(C,F).

Proof. Every substitution f : Γ → ∆ in Span(C,F) can be seen as a sprout
⊗

f :⊗
Γ→

⊗
∆ in C. We call a term in Span(C,F) a representor when this sprout is a

representor.

Suppose thatM : A 7→ B is an n-type in Span(C,F). ThenPre-Homomorphism

Types induces a two-sided fibration HM , and this defines an (n+1)-type HM :M 7→
M in Span(C,F). Pre-Homomorphism Types also gives us a reflexivity (n + 1)-

term rM :M → HM in Span(C,F). This makes Span(C,F) reflexive.
Suppose that Γ is an n-context in Span(C,F). Suppose that k < n, and that

x is a k-variable in Γ. Since reflexivity terms are representors and identity sprouts

are representors, Composition of representors tells us that the substitution rΓx

is a representor. Furthermore, Composition of fibrations tells us that
⊗

Γ is

a two-sided fibration. Hence,
⊗

rΓx pre-lifts against
⊗

Γ. By Remark 4.3.1.7 and

Remark 4.1.0.3, this induces a choice of pre-homomorphism types for Span(C,F).

Definition 4.3.2.4. A strict homomorphism type category is a pre-homomorphism

type category such that, whenever r : M → N is a representor and O is a two-sided

fibration, the pre-lift liftrO of r against O is a lift, and this lift is unique.

Definition 4.3.2.5. A fibrational homomorphism type category is a pre-homomorphism

type category such that, whenever r : M → N is a representor and O is a two-sided

fibration, the pre-lift liftrO of r against O is a lift.

Definition 4.3.2.6. A weak homomorphism type category is a pre-homomorphism

type category such that, whenever r : M → N is a representor and O is a two-sided

fibration, the pre-lift liftrO of r against O can be equipped with the structure of a

weak lift.

Theorem 4.3.2.7. Suppose that (C,F , I) is a category with pre-homomorphism types.

1. When (C,F , I) is a strict homomorphism type category, the globular multicate-

gory Span(C,F) has strict homomorphism types.

2. When (C,F , I) is a fibrational homomorphism type category, the globular mul-

ticategory Span(C,F) has fibrational homomorphism types.

3. When (C,F , I) is a weak homomorphism type category, the globular multicate-

gory Span(C,F) has weak homomorphism types.
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Proof. This follows immediately from Remarks 4.2.0.3, 4.2.0.4 and 4.3.1.7 and Defi-

nition 4.3.1.8.

4.3.3 Construction from Identity Type Categories

We now show that various flavours of categories with homomorphism types are in-

duced by their one-sided analogues.

Definition 4.3.3.1 ( [54]). An identity type category consists of a category C together
with two classes of morphisms I,F ⊆ ArrC, whose elements we refer to as acyclic

cofibrations and fibrations respectively, satisfying the following properties:

� Fibrancy: The category C has a terminal object ⊤, and for each object A, the

canonical morphism A→ ⊤ is a fibration.

� Composition: The classes I and F contain the identities and are closed under

composition.

� Stability: The pullback of a fibration along an arbitrary morphism in C exists,
and is a fibration.

� Frobenius: The pullback of an acyclic cofibration along a fibration is an acyclic

cofibration.

� Orthogonality: For each acyclic cofibration i, each fibration f , and each com-

mutative square of the form

C M

B A

i

x

fl

y

there is a dashed arrow l making the whole diagram commute.

� Identity Types: For each fibration f : M ↠ A, the diagonal map ∆f : M →
M ×AM factorises into a composite

M IdM M ×AM
rM g

where rM is an acyclic cofibration and g is a fibration.

Example 4.3.3.2. The classifying category of any type theory with identity types

can be equipped with the structure of an identity type category. (See [54].)
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Remark 4.3.3.3. Note that Fibrancy, Stability, andComposition imply that ev-

ery identity type category has finite products, that product projections are fibrations,

and that the product of two fibrations is itself a fibration.

Remark 4.3.3.4. Stability implies that every isomorphism is both an acyclic cofi-

bration and a fibration.

Remark 4.3.3.5. By Fibrancy and Stability, every acyclic cofibration is a split

monomorphism.

Theorem 4.3.3.6. Every identity type category induces a fibrational homomorphism

type category such that:

� A two-sided fibration M : A 7→ B is a span such that the corresponding mor-

phism (a, b) :M ↠ A×B is a fibration.

� A representor is a sprout r : M → N, f 7→ g whose underlying morphism

r :M ↪→ N in C is an acyclic cofibration.

Proof. Identities follows immediately. Lifting implies that we have the pre-lifts

required by Pre-Lifting, and that these pre-lifts are lifts. Furthermore, Identity

Types implies Pre-Homomorphism Types. Hence, it remains to prove that we

can compose two-sided fibrations and representors.

We will first prove two-sidedComposition of Fibrations, adapting an argument

in [47, Proposition 7.2.6]. Suppose that M : A 7→ B and N : B 7→ C are two-sided

fibrations, corresponding to fibrations (a, b) : M ↠ A × B and (b′, c) : N ↠ B × C
respectively. Then by Stability, the left-hand map of the pullback square

M ×B N N

M × C B × C

idM ×Bc (b′,c)

b×idC

is a fibration. By Composition and Remark 4.3.3.3, we also know that a× idC is a

fibration. Hence, by Composition, we have that the morphism a×B c :M ×B N ↠

A× C is a fibration as required.
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We next show that we have Composition of Representors. Suppose that we

have a commutative diagram of spans of the following form:

M N

A B C

M ′ N ′

A′ B′ C ′

i j

k

ϕ ψ

We need to show that the induced morphism between pullbacks i × j : M ×B N →
M ′ ×B′ N ′ is an acyclic cofibration. We have the following commutative diagram:

M ×B′ N M ×B′ N ′ M

M ′ ×B′ N M ′ ×B′ N ′ M ′

N N ′ B′

idM ×j

i×idN

π1

i×idN′ i

idM′ ×j

π2

π1

π2 ϕ

j ψ

Each quadrant is a pullback square. Since ϕ is a fibration, the downward arrows of

the bottom row must be fibrations. Similarly, since ψ is a fibration, the rightward

arrows of the second column must be fibrations. Since j is an acyclic cofibration,

Frobenius implies that is pullback, idM ′ ×j :M ′×B′N →M ′×B′N , is also an acyclic

cofibration. By a symmetrical argument, the arrow i× idN ′ :M ×B′N ′ →M ′×B′ N ′

is also an acyclic cofibration. The composite middle rightward arrow is just the

projection π1 : M ′ ×B′ N ′ ↠ M ′ and so it is a fibration. Since i is an acyclic

cofibration, Frobenius implies that its pullback, i × idN : M × B′N → M ′ ×B′ N

is also an acyclic cofibration. By a symmetrical argument idm×j : M ×B′ N →
M×B′N ′ is also an acyclic cofibration. Composition now implies that the composite

(idM ′ ×j) ◦ (i× idM) = (i× idN ′) ◦ idM ×j :M×B′ , that is the arrow

M ×B′ N M ′ ×B′ N ′,
i×j

is an acyclic cofibration. Since k is an acyclic cofibration, it is a fortiori a monomor-

phism. Hence, the canonical morphism M ×B N → M ×B′ N is an isomorphism.

Examining projections, it is clear that the composite

M ×B N M ×B′ N M ′ ×B′ N ′∼= i×j
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is precisely the canonical arrow i × j : M ×B N → M ′ ×B′ N ′. However, by Re-

mark 4.3.3.4 and Composition, this composite is an acyclic cofibration.

Just as categorical models of identity types induce globular multicategories with

fibrational homomorphism types, categorical models of path types induce globular

multicategories with weak homomorphism types.

Definition 4.3.3.7 ( [10,55]). Suppose that C is a category, together with two classes

of morphisms W ,F ⊆ ArrC, whose elements we refer to as weak equivalences and

fibrations. We refer to elements of W ∩ F as acyclic fibrations. We say that C is a

path categorywhen it satisfies the following properties:

� Composition: Fibrations are closed under composition.

� Isomorphisms: Isomorphisms are acyclic fibrations.

� 2-out-of-6: If f : A → B, g : B → C, h : C → D are composable arrows, and

gf and hg are weak equivalences, then so are f, g, h and hgf .

� Stability: The pullback of a fibration along an arbitrary morphism in C exists,
and is again a fibration. The pullback of an acyclic fibration along an arbitrary

morphism in C exists, and is again an acyclic fibration.

� Path objects: For each object A ∈ C, the diagonal map ∆A : A → A × A

factorises into a composite

A IdA A× ArM (s,t)

where rM is an acyclic cofibration and g is a fibration.

� Fibrancy: The category C has a terminal object ⊤, and for each object A, the

canonical morphism A→ ⊤ is a fibration.

� Cofibrancy: Every acyclic fibration has a section.

Example 4.3.3.8. The classifying category of any type theory with propositional

identity types can be equipped with the structure of a path category. See [10].

Example 4.3.3.9. Let C be a Quillen model category. If every object of C is cofibrant,
then the subcategory of fibrant objects in C is a path-category. In particular, both the

Kan-Quillen model structure, and the Joyal model structure on simplicial sets satisfy

this property. Fibrant objects in these cases are Kan complexes and quasi-categories

respectively. Hence, standard topological models of (∞, 0)- and (∞, 1)-categories can
be organized into path categories.

151



Theorem 4.3.3.10. Every path category induces a weak homomorphism type category

such that:

� A two-sided fibration M : A 7→ B is a span such that the corresponding mor-

phism (a, b) :M ↠ A×B is a fibration.

� A representor is a sprout r : M → N, f 7→ g whose underlying morphism

r :M ↪→ N in C is a weak equivalence.

Proof. Composition of Fibrations follows by the same argument given in the proof

of Theorem 4.3.3.6. Pre-Homomorphism Types follows from [55][Proposition 2.3].

Pre-lifting follows from [55][Lemma 2.9], and these pre-lifts can be made into weak

lifts using [55][Theorem 2.38].

Finally, Composition of Representors amounts to the following well known

result: if we have a transformation between cospans whose objects are fibrant, and

whose legs are fibrations

M N

B

M ′ N ′

B′

i∼ j∼

k∼

ϕ ψ

such that the vertical maps are weak equivalences, then the induced map between

pullbacks i× j : M ×B N → M ′ ×B′ N ′ is a weak equivalence. (These pullbacks are

homotopy pullbacks.)
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Chapter 5

Constructing Higher Categories

We have seen a number of manifestations of the close relationship between globular

multicategories with homomorphism types and higher categories. Various collections

of higher categories give rise to globular multicategories with homomorphism types.

Furthermore, each higher category induces a globular multicategory of elements, and,

under mild conditions, a vertical globular multicategory. We now aim to demonstrate

results in the opposite direction: given globular multicategories with homomorphism

types, we will construct higher categorical structures.

To this end, we study the structures attached to each type and term in globular

multicategories with homomorphism types. For each n, there is a globular multicate-

gory LHTn with strict homomorphism types such that to give an n-type in a globular

multicategory X with strict homomorphism types is to give a homomorphism type

preserving homomorphism

LHTn −→ X.

Viewing globular multicategories as algebraic theories this correspondence says that

each n-term in X is a model of LHInπ, or, equivalently, that the theory LHInπ is the the-

ory of n-types with strict homomorphism types. Similarly, for each n-pasting diagram

π, there is a globular multicategory LHInπ with strict homomorphism types such that

to give a π-shaped n-term in a globular multicategory X with strict homomorphism

types is to give a homomorphism type preserving homomorphism

LHInπ −→ X.

Hence, the globular multicategory LHInπ can be seen as the theory of n-terms with

strict homomorphism types. Thus, types and terms inside a globular multicategory

with strict homomorphism types can be understood by studying LHTn and LHInπ.
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We show that LHI0 = 1, the terminal globular operad. Since 1 is well known to

be, in a precise sense, the theory of strict ω-categories, it follows that each every 0-

type in a globular multicategory X with strict homomorphism types has the structure

of a strict ω-category in X. We show that, moreover, when X = ModY for some Y,
the 0-types in Y are exactly strict ω-categories in X. See Example 5.2.0.2.

In a similar vein, we show that LHI00 can be seen as the theory of strict functors

between strict ω-categories. Thus, every 0-term f : A→ B in a globular multicategory

X with strict homomorphism types is, in a precise sense, a functor between the strict

ω-categories in X corresponding to A and B. See Example 5.2.0.4.

These results and more serve to demonstrate a deep connection between strict

homomorphism types and strict higher categorical structures. Our next goal is to

describe a similar relationship between fibrational homomorphism types and certain

weak higher categorical structures.

It is well known that contractible globular operads can be seen as theories of

weak ω-categories (see [6]). However, other weak higher categorical structures such

as higher functors are less well understood in the globular setting. See for instance

[23, 25, 26] for work in this direction. We develop a new approach to understanding

these objects. We define acyclic fibrations of globular multicategories ; whenever Y ↠

X is an acyclic fibration and X is the “theory of widgets” we view Y as a “theory

of weak widgets”. In particular, a globular operad P is contractible exactly when

the canonical homomorphism P → 1 is an acyclic fibration. This last result follows

from [22].

Having developed tools to understand weak higher categorical structures in glob-

ular multicategories, we then relate these structures to fibrational homomorphism

types. We mirror the approach taken for strict homomorphism types. For each n,

there is a globular multicategory LFib
H Tn with fibrational homomorphism types such

that to give an n-type in a globular multicategory X with fibrational homomorphism

types is to give a homomorphism type preserving homomorphism

LFib
H Tn −→ X.

Hence, LFib
H Inπ is the theory of n-types with fibrational homomorphism types. Similarly,

for each n-pasting diagram π, there is a globular multicategory LFib
H Inπ with strict ho-

momorphism types such that to give a π-shaped n-term in a globular multicategory

X with strict homomorphism types is to give a homomorphism type preserving ho-

momorphism

LFib
H Inπ −→ X.
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Hence, the globular multicategory LFib
H Inπ can be seen as the theory of n-terms with

fibrational homomorphism types. We show that there are canonical acyclic fibrations

LFib
H In → LHIn and LFib

H Inπ → LHInπ. Thus, the theory of n-types with fibrational ho-

momorphism types is a weakening of the theory of n-types with strict homomorphism

types, and similar statements hold for theories of terms with homomorphism types.

In particular, every 0-type in a globular multicategory with fibrational homomor-

phism types has the structure of a weak ω-category, and every 0-term can be seen as

a weak ω-functor between these categories. See Example 5.4.0.5 and Example 5.4.0.6.

We make a conjecture that would allow us to obtain similar results about globular

multicategories with weak homomorphism types.

5.1 Shapes of Types and Terms

Every globular multigraph can be viewed as a presheaf over a category whose objects

are shapes of types and terms. We can better understand the structure of types and

terms in globular multicategories with homomorphism types by describing how to

freely add homomorphism types to the representables induced by these objects.

Definition 5.1.0.1. We define a category G+ of generic types and terms. Its set of

objects is the coproduct of sets

G+ el(pd).

Thus, for each n ∈ G, there is an object Tn in G+, and for each π ∈ pd(n), there is

an object Inπ in G+. We refer to Tn as the generic n-type, and we refer to Inπ as the

generic π-shaped n-term. There are four classes of arrows in G+:

� Every arrow σ : m→ n in G induces a corresponding arrow Tm → Tn between

generic types in G+. These arrows pick out the source and target types of

generic types.

� Every arrow σ : m → n in el(pd) induces a corresponding arrow Iσπ : Imσπ → Inπ
between generic terms in G+. These arrows pick out the source and target terms

of generic terms.

� For each k ≤ n, each n-pasting diagram π, each map of globular sets x : k → π

induces an arrow

Vx : Tk −→ Inπ
in G+. These arrow pick out the variables (types) in the domain contexts of

generic terms.
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� For each k ≤ n, each n-pasting diagram π, and π,and each arrow A : k → n in

G, there is an arrow

OA
π : Tk −→ Inπ

in G+.These arrows pick out the output types of generic terms.

Composition of arrows in G+ is induced by composition in G-Set.

Theorem 5.1.0.2. The category of globular multigraphs is equivalent to the category

of presheaves over G+.

Proof. This follows from [30, Proposition C.3.4 and Proposition 6.5.6].

Remark 5.1.0.3. Each object of G+ can be viewed as a globular multigraph or as

a globular multicategory. The globular multigraph corresponding to Tn has a unique

non-degenerate n-type. The globular multigraph corresponding to Inπ has a unique

n-term hπ. This n-term is π-shaped. Each type A in Inπ corresponds to either:

� a cell in the pasting diagram π if A is in the source context of hπ,

� or a cell in the representable n if A is in the target type of hπ.

Suppose that X is a globular multicategory. Then, by the Yoneda Lemma, an n-type

A in X corresponds to a homomorphism Ā : Tn → X, and a π-shaped an n-term f in

X corresponds to a homomorphism f̄ : Inπ → X.

Remark 5.1.0.4. The composition of terms in X can also be described using opera-

tions on the generic types and terms. Let f, g be a pair of composable 0-terms in X.
Consider the following pushout of generic terms:

T0 I00

I00 I00 +0 I00

O⋆
0

V⋆ ι1

ι2

Then the pair f̄ , ḡ induces a canonical homomorphism (f̄ , ḡ) : I00+0 I00 → X such that

(f̄ , ḡ) ◦ ι1 = f̄ and (f̄ , ḡ) ◦ ι2 = ḡ. There is a canonical homomorphism

I00 I00 +0 I00
c

that “picks out the composite”. Let h : A→ B be the unique non-trivial term in I00.
Then c(h) = ι1(h); ι2(h). It follows that (f̄ , ḡ) ◦ c = f ; g.

More generally, let π be an n-pasting diagram. Then π induces a diagram Π :

el(π)→ GlobMult such that
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� For each i ∈ π(k), we have that Π(i) = Tk.

� For each σ : (k, i)→ (k′, j) in el(π), we have that Π(σ) = Tσ : Ti → Tj.

Let Tπ be the colimit of Π. By construction, there is a canonical homomorphism

Vπ : Tπ → Inπ such that the restriction of Vπ to the component of Tπ corresponding

to i ∈ π(k) is Vi. Intuitively, this arrow picks out the source context of the generic π-

shaped n-term. Suppose that we have a π-shaped pasting diagram of pasting diagrams

(ρi)i∈π. Let P : el(π)→ GlobMult be defined so that:

� For each i ∈ π(k), we have that P (i) = Ikρi .

� For each σ : (k, i)→ (k′, j) in el(π), we have that P (σ) = Iσρi : I
k
ρi
→ Ik′ρj .

Let Iπρ be the colimit of P . For each i ∈ π(k), there is a homomorphismOk
ρi
: Tk → Ikρi .

These together induce a canonical homomorphism Oπ
ρ : Tπ → Iπρ .

Hence, consider the following pushout in GlobMult:

Tπ Iπρ

Inπ Iπρ +π Inπ

Oπ
ρ

Vπ ι1

ι2

Let ∆ be a π-shaped n-context in X. Then ∆ corresponds to a homomorphism

∆ : Tπ → X. Let f : Γ → ∆, g : ∆ → A be a pair of composable n-terms in X
such that fi is ρi-shaped. Then f corresponds to a homomorphism f̄ : Iπρ → X, and
g corresponds to a homomorphism ḡ : Inπ → X. It follows that there is an induced

homomorphism (f̄ , ḡ) : Iπρ +π Inπ → X. Let hπ be the unique non-trivial n-term in Inπ.
Then f̄(hπ) = f . For each i ∈ π(k), let hρi be the unique non-trivial k-term in Ikρi .
Then ḡ(hρi) = gi. Furthermore, there is a canonical composite hρ;hπ in the pushout

Iπρ +π Inπ. Let σ =
⊙

i∈π ρi. Let

c = hρ;hπ : Inσ −→ Iπρ +π Inπ.

Then (f̄ , ḡ) ◦ c = f ; g.

Remark 5.1.0.5. The category G+ is a direct category. Let N be the poset of

natural numbers. There is an identity-reflecting functor dim : G+ → N which sends

the generic n-type and all generic n-terms to the natural number n. Let U ∈ G+ be

a generic n-type or n-term, identified with its image under the Yoneda embedding.

Then the boundary ∂U is the subpresheaf of U such that

w ∈ ∂U(v) ⇐⇒ dim v < n.
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We will denote the canonical inclusion of the boundary by

ιU : ∂U −→ U.

In Section 5.3 we will use these boundary inclusions to describe a higher dimensional

notion of weakness.

Definition 5.1.0.6. Let GlobGraph be the category of globular multigraphs with a

reflexive globular set of types. Suppose that X is an object in GlobGraph. Suppose

that 0 ≤ k ≤ n, and let π be an n-shaped pasting diagram. Suppose that Γ is a

π-shaped n-context, that M is an n-type, and that g : sΓ → sM h : tΓ → tM are

term-wise parallel (n − 1)-terms. Then we refer to a k-cell in [[Γ → M, g 7→ h]]

as a π-shaped k-transfor. We define the generic π-shaped k-transfor IπHkn
to be the

initial globular multigraph with a reflexive globular set of types containing a π-shaped

k-transfor. When k = 0, this is just the generic term Iπn. When k > 0, the globular

multigraph IπHk
n
can be constructed by quotienting Iπn+k so that its unique (n+k)-type

is HkM : Hk−1M 7→ Hk−1M . Then to give a homomorphism,

IHk
n

π −→ X

preserving the reflexive structure on types, is to give a π-shaped k-transfor in X. We

define the boundary ∂IH
k
n

π just as for generic terms.

5.2 Strict Higher Categories from Strict Homo-

morphism Types

We now study results justifying the intuition that objects in globular multicategories

with homomorphism types are “higher category-like”. Given globular multicategories

with strict homomorphism types, we construct strict higher categorical structures.

Let X and Y be globular multicategories, and suppose that X has strict homo-

morphism types. Let UH GlobMultH → GlobMult be the functor forgetting homo-

morphism types. Then, since UH has a left adjoint, LH, we have a natural bijection

between homomorphisms

Y −→ UHX

and homomorphism type preserving homomorphisms

LHY −→ X.
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When X = ModZ is the result of the modules construction, applying adjointness

again, such a homomorphism corresponds to a homomorphism

UHLHY −→ Z.

In particular, when Y = Tn is a generic type, a homomorphism Tn → UHX is just a

type in X, and so we can understand types in X by describing LHTn. Similarly, we

can understand terms in X by describing LHInπ.

Remark 5.2.0.1. Let X be a globular multicategory. Then the types and terms of

LHX are inductively generated by the following rules:

� For each type (or term) A in X, there is a canonical type (or term) A in LHX.

� Whenever A is an n-type in LHX, there is a canonical (n + 1)-type HA and a

(n+ 1)-term rA : A→ HA, idA 7→ idA satisfying reflexivity rules.

Hence, each type in LHX is of the formHi
A for some A ∈ X and i ≥ 0. Let f : Γ→ Hi

A

be a term in LHX. Then Γ must be of the form Γ′ ⊕x1 HB1 ⊕x2 · · · ⊕xl HBl
, for some

sequence of variables x1 : B1, . . . , xl : Bl. Precomposing with reflexivity terms, we

may obtain a term

n(f) : Γ′ → HiA,

and by induction we must have that

n(f) = g(f); riA,

for some g(f) ∈ X. Thus f is of the form

Jx1,...,xl(g(f); r
i
A),

for some variables x1, . . . , xl, and i ≥ 0. In fact, every term of LHf is uniquely

determined by this data.

Example 5.2.0.2. The globular multicategory T0 has a unique 0-type ⋆ and a unique

0-term, id⋆. Thus, LHT0 contains a unique n-type,Hn
⋆ , for each n. Suppose that f, f

′ :

Γ → Hi
⋆ are parallel n-terms in LHT0. Then we must have that g(f) = g(f ′) = id⋆.

Since f, f ′ are parallel, it now follows that f = f ′. On the other hand, for any n ≥ 0

and any n-dimensional pasting diagram π, we can use J-terms to construct π-shaped

n-term Jπ(r
n
⋆ ) in LHT0. Hence, LHT0 is the terminal globular operad 1. Thus, every

0-type of a globular multicategory with strict homomorphism types has the structure

of a strict ω-category.
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Example 5.2.0.3. When n > 0, we think of LHTn as a theory of higher profunc-

tors. It follows from the description of Mod SpanSet in Example 3.5.3.4 that an

algebra of T1 is precisely a profunctor enriched in Strω -Cat. Thus, every 1-type in a

globular multicategory with strict homomorphism types has the structure of a strict

ω-profunctor.

Example 5.2.0.4. The globular multicategory I00 contains exactly two 0-types A and

B and its only non-trivial 0-term is a term f0 : A → B. Thus, the types of LHI00
are of the form Hk

A,Hk
B for each k. The terms of LHStrI00 can be divided into three

classes:

� The collection of terms such that g(f) = idA assemble into a copy of the terminal

globular operad 1.

� The collection of terms such that g(f) = idB assemble into another copy of the

terminal globular operad 1.

� Suppose that f is a term in LHI00 such that g(f) = f0. Let π be a k-pasting

diagram. Let πA be the unique π-shaped context in the terminal globular operad

generated by A. Then there is a unique term πA → Hk
B namely Jπ(f0; r

k
B).

Let F : UHLHI00 → Span(Set) be an algebra of UHLHI00. Then these collections

induce:

� An ω-category F (A)

� An ω-category F (B)

� For each k-pasting diagram πA in F (A), we have a unique assignment sending πA

to the k-type HkB. In other words, we have a strict ω-functor F (A)→ F (B).

Thus, we think of LHI00 as the theory of strict ω-functors. It follows that every 0-term

in a globular multicategory with strict homomorphism types has the structure of a

strict ω-functor.

Example 5.2.0.5. Let LHI0H0
be the generic k-transfor between 0-terms with strict

homomorphism types. It follows from Example 3.5.3.4 that an algebra of LHIH0
0 is a

strict natural transformation between strict ω-functors.

Remark 5.2.0.6. By taking truncations, we obtain similar descriptions of the n-

globular multicategories whose algebras are strict n-categories, strict profunctors,

between these categories, as well as strict higher n-functors and strict higher trans-

formations.
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Suppose that X is a globular multicategory with strict homomorphism types.

Suppose that B is a 0-context in X, and that A is a 0-type in X. Then the strict ω-

category structure on A induces a strict ω-category structure on globular set [[Γ→ A]]

of 0-terms with codomain A. We define a strict ω-category C : 1→ SpanSet as follows:

� For each n, we set C(n) = [[B → A]](n).

� Let A′ : 1 = LH0 → X be the homomorphism corresponding to A. Let π be

an n-pasting diagram, and let cπ : π → n be the unique π-shaped term in

1. For each n-pasting diagram π, a map p : π → [[Γ → A]] is equivalently a

substitution p : Γ→ A′(π) in X. Hence, we define the operation C(cπ) by

C(cπ)(p) = p;A′(cπ).

Now suppose that A,B are parallel n-types in X. Then X(A,B) is a globular multi-

category with strict homomorphism types. Each n-type M : A 7→ B in X is a 0-type

in X(A,B), and consequently we have a homomorphism M ′ : 1 = LH0 → X(A,B).

Arguing as above, the homomorphism M ′ allows us to equip the globular set

[[Γ −→M, g −7→ h]]

with the structure of a strict ω-category for each n-context Γ, and each pair of term-

wise parallel (n− 1)-types g : sΓ→ A and h : tΓ→ B.

5.3 Homotopical Tools for Globular Multicategories

By Remark 5.1.0.5, the category G+ of generic types and terms is a direct category.

This induces a weak factorisation system on globular multicategories and related

structures. We will use this weak factorisation system to understand the structure of

objects in globular multicategories with fsbrational homomorphism types.

Definition 5.3.0.1. Let us denote the set of boundary inclusions of G+ by

I = {ιU : ∂U −→ U | U ∈ G+}.

Then I cofibrantly generates a weak factorisation system (L,R) on the category of

globular multigraphs GlobGraph. We refer to maps in L as cofibrations and maps
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in R as acyclic fibrations. A map of globular multigraphs f : X → Y is an acyclic

fibration when, for any generic type or term U, each commutative square

∂U X

U Y

ιU F

has a filler. A map of globular multigraphs i : Z → W is a cofibration when for each

acyclic fibration F : X→ Y, each commutative square

∂Z X

W Y

i F

has a filler.

Proposition 5.3.0.2. A map of globular multigraphs is a cofibration exactly when it

is a monomorphism.

Proof. Since G+ is a direct category, it is skeletal and has no non-trivial automor-

phisms. The result now follows from [15, Proposition 8.1.37].

Remark 5.3.0.3. A similar argument works for maps of globular multigraphs with

a reflexive globular set of types. Suppose that IH
k
n

π is the generic k-transfor between

π-shaped k-terms. Then it follows that the boundary inclusion of IH
k
n

π is a cofibration.

This weak factorisation system can be transferred to other categories of interest

using the adjunctions induced by various forgetful functors. We have the following

commutative diagram of forgetful functors:

GlobMultH

GlobMultFibH

GlobMultPreH

GlobMult GlobGraph

GlobGraph
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Each of these forgets essentially algebraic data and so has a left adjoint. Let U : C →
D be one of these forgetful functors, and let F : D → C be its left adjoint. Then the

weak factorisation system of cofibrations and acyclic fibrations in C is generated by

FιU : F∂U ↪−→ FU

for each generating cofibration in ιu in C. A morphism f : X → Y in C is an acyclic

fibration exactly when Uf is an acyclic fibration in D. Moreover, the left adjoint F

preserves cofibrations.

Example 5.3.0.4. Suppose that X and Y are globular operads. Then every homo-

morphism of globular operads is bijective on types and so the lifting conditions for

generic types are always satisfied. It follows that a homomorphism F : X → Y is an

acyclic fibration if and only if it satisfies the lifting conditions for generic terms. The

canonical map

X 1
!

to the terminal operad is an acyclic fibration exactly when X is a normalised con-

tractible globular operad. This follows from the observations of Garner in [22].

We now give a useful alternative description of acyclic fibrations. Intuitively,

this description says that the term-lifting properties of acyclic fibrations are satisfied

exactly when, on terms, a homomorphism is strictly surjective and weakly reflects

identities.

Definition 5.3.0.5. Let F : X→ Y be a homomorphism of globular multicategories

with pre-homomorphism types. We say that F weakly reflects identities of terms if, for

all parallel terms v, v′ : Γ→ A in X such that F(v) = F(v′), we have a transformation

ϕ : v → v′ such that F(ϕ) = F(v); rA. In this case, we say that ϕ is an identification.

We say that F strictly reflects identities when all the corresponding identifications

can be chosen to be identity transformations.

Proposition 5.3.0.6. A homomorphism of globular multicategories with pre-homomorphism

types F : X→ Y is an acyclic fibration if and only if all the following conditions hold:

(i) The homomorphism F has the right lifting property against the boundary-inclusions

of types.

(ii) The homomorphism F is surjective on terms.

(iii) The homomorphism F weakly reflects identities of terms.
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Proof. First suppose that F is an acyclic fibration. Then (i) follows trivially. For

each generic type (or term) U, the unique map ∅ → U is a cofibration. The lifting

property of F with respect to this map tells us that F is surjective on types or terms

with the same shape as U. This proves (ii).
Now suppose that v, v′ : Γ→ A are π-shaped parallel n-terms in X and that F(v) =

F(v′). Then, v and v′ together correspond to a homomorphism [v, v′] : ∂IHn
π → X.

Furthermore, we have the following commutative square:

∂IHn
π X

IHn
π Y

[v,v′]

∂IHn
π F

F(v);rA

Since F is an acyclic fibration, this square has a filler. This filler defines the transfor-

mation v → v′ required by (iii).

Now suppose on the other hand that we have (i), (ii), and (iii). Let Inπ be the

generic π-shaped n-term, and fix a commutative square:

∂Inπ X

Inπ Y

∂̃v

ιInπ F

v

Suppose that ∂̃v : s̃v 7→ t̃v. By (ii), there is a π-shaped n-term w in X such that

F(w) = v. It follows that F(sw) = sv = F(s̃v) and F(tw) = tv = F(t̃v). Hence, by

(iii) there are transformations ϕ : s̃v → sw and ψ : tw → t̃v such that F(ϕ) = sw; r

and F(ψ) = tw; r. We define

ṽ = ϕ ◦ w ◦ ψ

By construction ∂ṽ = ∂̃v. Furthermore, homomorphisms of globular multicategories

with pre-homomorphism types preserve − ◦ −, and so F(ṽ) = F(w) = v. Hence, ṽ

defines the required filler, and so F is an acyclic fibration.

5.4 Weak Higher Categories from Fibrational Ho-

momorphism Types

Acyclic fibrations allows us to weaken the theories described by globular multicate-

gory. Suppose that X is a globular multicategory, and that that Y ↠ X is an acyclic

fibration. Then we can think of Y as a weakening of X. Suppose, for example, that
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X and Y are operads, and that X = 1 is the terminal globular operad, the theory

of strict ω-categories. By Example 5.3.0.4, Y is contractible, and so, in a sense,

parameterises a theory of weak ω-categories.

Consider the following diagram of adjunctions whose right adjoints are forgetful

functors:

GlobMult GlobMultFibH GlobMultH

LFib
H

⊥

UFib
H

S

⊥

U

We refer to the left-hand adjunction as the strictification adjunction. Its left adjoint

S adds identities of the form Jx(rx; f) = f to globular multicategories with fibrational

homomorphism types. Let η : id⇒ US be the unit of this adjunction. The following

result allows us to view structures in globular multicategories with fibrational homo-

morphism types as weakenings of structures in globular multicategories with strict

homomorphism types.

Theorem 5.4.0.1. Given any globular multicategory X, the strictification unit

LFib
H X

USLFib
H X

ULHX

η(LFib
H X)

is an acyclic fibration.

In order to prove this theorem, we first need to introduce a new notion.

Definition 5.4.0.2. We say that a context is reduced when there does not exist a

homomorphism type HM in Γ. Each context Γ induces a reduced context Γν such

that

Γ = Γν ⊕x1 HB1 ⊕x2 · · · ⊕xl HBl

for some sequence of variables x1 : B1, . . . , xl : Bl. We say that a term is reduced

when its source context is reduced. Composing with reflexivity terms, it follows that

every term f : Γ → A induces a canonical reduced term fν such that rSν ; f = fν .

The laws defining homomorphism types in a globular multicategory with fibrational

homomorphism types ensure that fν is well-defined.
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Proposition 5.4.0.3. Suppose that F : X → Y is a homomorphism of globular

multicategories with homomorphism types, and that the homomorphism types of Y
are strict. Suppose that f, f ′ : Γ→ A are parallel terms in X such that F (f) = F (f ′).

Suppose that we have a transformation ϕν : fν → f ′
ν such that F (ϕν) = F (fν); rA.

Then there exists a transformation ϕ : f → f ′ in X such that F (ϕ) = F (f); rA and

rSν ;ϕ = ϕν. Furthermore, when X has strict homomorphisms, we have that ϕ = f ; rA.

Proof. We have that Γ = Γν ⊕x1 HB1 ⊕x2 · · · ⊕xl HBl
for some sequence of variables

x1 : B1, . . . , xl : Bl. Hence, since F has strict homomorphism types, we have that

F (f); rA = Jxl · · · Jx1(F (f)ν); rA
= Jxl · · · Jx1(F (fν)); rA
= Jxl · · · Jx1(F (fν); rA)

= Jxl · · · Jx1(F (ϕν))

Hence, repeatedly applying J-rules, we obtain a term

ϕ = Jxl · · · Jx1(ϕν)

in X such that ϕ = F (f); rA as required. The “furthermore” part follows immediately.

Proof of Theorem 5.4.0.1. It is easily seen that η(LHX) is surjective on types and

terms. Hence, it suffices to show that it weakly reflects identifications. A straightfor-

ward induction shows that each reduced term in LHX is of the form ηH(X)(g); r, for a
unique term g in X and a unique composite reflexivity term r : A→ HkA. Similarly,

each reduced term in LHX is of the form ηH(X)(g); r for a unique choice of a g and r.

Furthermore, the homomorphism η(LHX) sends ηH(X)(g); r to ηH(X)(g); r. Hence,

since ηH(X) is injective on terms, the homomorphism η(LHX) is injective on reduced

terms. The result now follows from Proposition 5.4.0.3.

Remark 5.4.0.4. The constructed acyclic fibration is easily seen to be bijective on

0-terms. This is an analogue of the normalisation condition which is frequently placed

on globular operads.

Example 5.4.0.5. By Example 5.2.0.2, we have that LHT0 = 1, the terminal globu-

lar operad. Thus, in this case, Theorem 5.4.0.1 tells us that LFib
H T0 is a contractible

globular operad. Remark 5.4.0.4 tells us that this operad is normalised. It follows

that every 0-type in a globular multicategory with fibrational homomorphism has the

structure of a weak ω-category.
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Example 5.4.0.6. By, Example 5.2.0.4, the theory of strict ω-functors is LHI00.
Hence, LFib

H can be seen as a theory of weak ω-functors. Every 0-term in a glob-

ular multicategory with fibrational homomorphism types is a weak ω-functor in this

sense.

Example 5.4.0.7. By Example 5.2.0.3, the theory of strict ω-profunctors is LHT1.

Hence, LFib
H T1 can be seen as a theory of weak ω-profunctors. Every 1-type in a

globular multicategory with fibrational homomorphism types is a weak ω-profunctor

in this sense.

Example 5.4.0.8. Analogous to the strict case, the higher categorical structures on

types endow globular sets of terms

[[Γ −→M, g −7→ h]]

with the structure of a weak higher category.

Since these results all hinge on Theorem 5.4.0.1, the following conjecture would

allow us to prove similar results about globular multicategory with weak homomor-

phism types:

Conjecture 5.4.0.9. Given any globular multicategory X, the strictification unit

LWk
H X

USLWk
H X

ULHX

η(LWk
H X)

is an acyclic fibration.
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